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Abstract 
 
The evolution of waves and wave-induced currents over porous submerged breakwaters is studied by applying a 
numerical model based on a truncated version of Chen (2006) Boussinesq-type equations for waves and currents over 
porous bottoms. The equations of motion for the porous medium include an empirical Forchheimer-type term for 
laminar and turbulent frictional losses and an inertial term for acceleration effects following Sollitt and Cross (1972). 
Comparisons between simulations and new set of laboratory experimental data show excellent agreement for wave 
field in one-dimensional horizontal wave propagation and qualitatively good agreement for wave and current field in 
horizontal two-dimensional wave propagation. 
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1. Introduction 
 
The Boussinesq-type model equations for studying waves and currents around coastal structures have made 
remarkable advance during the past few decades. However, contrast to the fast development in modeling of 
hydrodynamics around impermeable structures, that of porous bottom or porous structures have been very 
slow, inevitably due to the uncertainty on determination of a few empirical coefficients associated with 
porous media. Most of the coastal structures such as groins, seawalls and offshore breakwaters are 
constructed with rubble, rocks or concrete blocks to withstand the forces generated by breaking waves and 
provide sufficient dissipation by turbulence in the interstices. As submerged breakwaters result primarily in 
wave dissipation through wave breaking over the structure, bottom friction and turbulence in porous layer, 
it is essential to include porous damping in modeling waves and currents around these structures.  

A few mathematical models have been proposed to predict wave-current interaction with permeable 
beds and structures recently. Kabayashi (1986) applied a permeable-bed model based on the nonlinear 
shallow water wave equation and accordingly ignored frequency dispersion entirely. Rajanakamthorn et al. 
(1990) in their work proposed a mathematical model for evolution of waves on permeable beds based on 
the mild-slope equation. However their model is limited to small amplitude waves propagating over gentle 
slopes of uniform porous beds. Water wave interactions with porous seabeds were investigated 
theoretically and experimentally by Gu and Wang (1991) extending the porous flow model developed by 
Sollitt and Cross (1972). They pointed out the importance of including nonlinear and inertial resistance 
forces in porous flow models and derived a complex wave dispersion equation for waves propagating over 
porous media.   

Flaten and Rigg (1991) were the first to propose Boussinesq-type model for evolution of waves over 
porous bed in shallow water with an asymptotic approach. Cruz et al. (1997) derived a set of 2DH 
Boussinesq equations over a porous bed of arbitrary thickness and tested their applicability on wave 
transformation over porous submerged breakwater with an opening for non-breaking waves. They 
incorporated frequency dispersion into the flow in porous media following the same approach of Madsen et 
al. (1991). Hsiao at al. (2002) presented a fully non-linear Boussinesq-type model, following the same 
approach of Nwogu (1993), to improve the dispersion properties inside the porous media and compared 
their model results with experimental data for the case of regular waves passing over the triangular porous 
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submerged breakwater in 1DH. Though they achieved reasonably good results, their model makes the 
assumption of weak vertical vorticity, a limited range of particle size, and weak spatial variation of 
damping rates inside the porous layer. Very recently, Chen (2006) improved Hsiao et al. (2002) model by 
eliminating weak vertical vorticity assumption and retaining higher order porous damping terms in 
momentum equation. His model relaxes the assumption on the scaling of the linear damping term in the 
momentum conservation equation for the porous layer, and therefore it is applicable to a wide range 
relative porous layer thicknesses. Recognizing the importance of retaining the vertical vorticity in 
Boussinesq-type equations for the simulation of breaking induced nearshore circulations, Chen et al. (2003) 
have eliminated the z  dependency in the fully nonlinear Boussinesq-type equations for impermeable beds 
by setting α in momentum conservation equation. Instead of choosing an arbitraryzz  z , Chen (2006) 
opted to integrate momentum conservation equations for both water layer and porous layer. This resulted 
elimination of z  dependency, at the same time retention of both the leading order and second order vertical 
vorticity terms. The  fundamental properties for wave propagation (wave celerity, porous damping rates) of 
Chen (2006) model equations are investigated in Cruz and Chen (2006) for constant depth and horizontal 
porous interface. One of the desirable features of Chen (2006) model is its potential applicability to 
heterogeneous porous beds. Cruz and Chen (2007) discussed the heterogeneity in the hydraulic properties 
of porous layers, which could lead to spatial variation in the porous resistance.   

Though most of the models have been tested for non-breaking wave transformation over porous 
submerged breakwaters; a few studies investigate the evolution of waves and wave-induced nearshore 
currents around these structures. Some exception are Johnson et al. (2005), and Johnson (2006) who 
validated a higher-order Boussinesq-type model (Karambas and Koutitas, 2002) with improved linear 
dispersion properties together with nonlinear long wave equation for porous media (Cruz. et al., 1997) 
using experimental data collected during the DELOS project. An eddy viscosity formulation is adopted in 
order to simulate the wave breaking induced energy dissipation (Kennedy et al., 2000). 

The goal of the present study is to discuss the evolution of waves and wave-induced currents around 
submerged porous breakwaters and to validate a numerical model based on a truncated version of Chen 
(2006) equations coupled with a transport equation to compute turbulent kinetic energy hence energy 
dissipation due to wave breaking. 
 
2. Description of the governing equations for waves and currents over porous beds 
 
Figure 1 shows the definition of the variables and the Cartesian coordinate system, where  denote 
the horizontal coordinates, 

)y,x(
z  is the vertical coordinate, and )t,y,x(ηz   is the free-surface elevation. The 

impermeable bottom boundary is at  and permeable interface at )y,x(hz b )y,x(hz  . 
 

 

 
 

Figure 1. Definition sketch of variables associated with wave transformation over porous beds. 
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Dropping higher-order nonlinear terms and higher order porous damping terms, the mass conservation 
equation reads as: 
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The momentum conservation equation for the water layer can be written as: 
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And the momentum conservation equation for the porous layer can be written as: 
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where  is the water particle velocity vector at )v,u( ααα u αzz  (inside water layer) and  is 

the water particle velocity vector at (inside permeable layer). The symbol n  and  are the 

porosity and thickness of the permeable layer respectively, which could be arbitrary in 

),( βββ vuu
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resistance force evaluated at , as follows: 
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where  and  are respectively the linear and nonlinear porous resistance coefficients, and  is the 

added mass coefficient. The porous resistance coefficients  and  are estimated from the following 

relationships: 

pa pb AC

pa pb
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The intrinsic permeability, , added-mass coefficient, , and nonlinear drag coefficient, , are 

calculated by empirical formulae, suggested by van Gent (1995) as follows: 
pK AC fC
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where  is the median diameter of permeable materials p  and m  are empirical coefficients that, 

in principle, should be determined by experiments for given permeable materia
50d ,

l. 

 p β,α C

 
3. Properties of the numerical model 
 
The terms ( 32 ,  and 4  in Chen, 2006), which come from the contribution of the higher-order vertical 
vorticity in  to the pressure field in the porous layer, and the terms, which stem from  terms in 
the polynomial expansion of the horizontal velocity vector,  are ignored in the present model. Only the 
higher-order terms (

sRw )μ( 4O
su

1  in Chen, 2006), which are yielded by the removal of z  dependency (by depth 
integration) are retained in the momentum conservation equation for the porous medium. 

Following the same idea of Nwogu (1993), appropriate values for αz  and β  are determined so that 
optimal dispersion properties of the model are achieved over a wide range of depths. The properties of the 
model are compared with those of the exact dispersion relation for linear water waves propagating in a 
constant depth, h , overlying a permeable bed with a constant thickness, , is given by Gu and Wang 
(1991) as follows: 
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in which  is a complex number ( irk ikkk  ), where the real part of , denotes the wave number and the 
imaginary part represents the spatial porous damping rate. 
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Detailed analysis of the model equations for their fundamental properties of wave motion over porous 
media can be found in Cruz and Chen (2006).   
 
4. Numerical model 
 
The Boussinesq-type equations are solved in the time domain using a third-order Adams-Bashforth 
predictor step and a forth-order Adams-Moulton corrector step. The computational domain is discretized as 
a rectangular grid with grid sizes  and x y , in the x  and  directions, respectively. The equation 
variables βαα  and βv  are defined at the grid points in a staggered mesh as shown in Fig. 2. The 
water depth and surface elevations are defined at grid points , while the velocities are defined half a 
grid point on either side of the elevation grid points. The external boundaries of the computational domain 
correspond to velocity grid points. The first-order spatial derivatives are differenced to , which 
automatically eliminates the error terms that would be of the same form as the dispersive terms (Wei and 
Kirby, 1995). The second-order spatial derivatives are discretized t )2 , while the advection terms 
are differenced with second-order upwind difference schem
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4.1. Offshore open boundary 
 
As there is significant wave reflection from the submerged breakwaters, it is essential to absorb the waves, 
which propagate back to the wave incident boundary to prevent buildup of wave energy inside the 
computational domain. This has been achieved with line boundary method proposed by Ishii et al. (1994). 
 

 
 

Figure 2. Definition sketch. 
 

Here the neighboring grid points are divided into two types according to their position with respect to line 
boundary. Inside the line boundary, incident and outgoing waves are to be dealt with, whereas only 
outgoing waves exist outside the line boundary as shown in Fig.2. In the finite difference scheme, for the 
computation inside the line boundary, the parameters i ( ii αα  or i ), which are coming from outside the 
line boundary are added with ini ,  and for the computation outside the line boundary, the parameters , 
which are coming from inside the line boundary are subtracted with . 
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4.2. Wave breaking induced energy dissipation 
 
Following Kennedy et al. (2000), a simple eddy viscosity type of formulation is adopted to simulate energy 
dissipation due to wave breaking by introducing momentum-mixing terms into momentum conservation 
equations in x and  directions; y
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The magnitude of the eddy viscosity is computed using one equation turbulence closure model, in which 
the eddy viscosity is related to turbulent kinetic energy and turbulent length scale: 
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The parameter B is introduced to ensure that turbulence is produced only when horizontal velocity at the 
wave crest, su , exceeds the phase velocity of the wave calculated from the linear wave theory. The length 
scale, tl  is set to be of the order of deep-water wave height, while an empirical coefficient, DC , is set to be 
0.02. We employed anisotropic eddy viscosity concept in 2DH model following Tajima et al. (2007). The 
model assumes that the eddy viscosity in the wave propagating direction should be characterized by the 
eddy viscosity generated by breaking waves while eddy viscosity features should not be that significant in 
the direction of wave crests. Based on such assumption they determined anisotropic eddy viscosity by: 
 

  (16) 

















θsinνν

νθcosν

νν

νν
2

2

tLK

LKt

yyyx

xyxx

 
where, , is the angle between wave propagating direction and θ x axis. The square of wave angle 
( ) is introduced considering both the shear velocity and the turbulent length scale.  is the 
well-known mixing term proposed by Larson and Kraus (1991). 

θθcos 22 sin, LKv

 
 mLK Huν  (17) 

 
where,  is a non-dimensional coefficient,  H : local wave height, : bottom wave orbital velocity. mu

 
5. Laboratory Experiments 

 
Laboratory experiments were performed in a 30m long, 0.6m wide, 0.8m deep wave-current flume and a 
11m long, 6.5m wide, 0.3m deep wave basin at the University of Tokyo. Two different permeable materials 
were used for the submerged breakwaters and the structural dimensions and the wave parameters 
associated with all the experiments are shown in Table.1. 
 

Table 1. Structural dimensions and wave parameters associated with experiments. 
 

Case No. Deep water 
wave 
height (m) 

Wave 
period 
(s) 

Offshore 
water 
depth (m)

Freeboard 
(m) 

Mean diameter 
of permeable 
material (m) 

Remarks 

Ex01_A01 0.033 1.00 0.255 0.055 0.02 Non-breaking, 1DH 
Ex02_B03 0.034 1.25 0.248 0.148 0.02 Non-breaking, 1DH 
Ex03_A01 0.041 1.00 0.300 0.028 0.012 Breaking, 1DH 
Ex03_A02 0.041 1.00 0.300 0.028 Impermeable Breaking, 1DH 
Ex04_A02 0.039 1.25 0.275 0.03 0.012 Breaking, 1DH 
Ex05_A01 0.038 1.00 0.275 0.03 0.012 Breaking, 1DH 
Ex06_A01 0.028 1.00 0.218 0.025 0.012 Breaking, 2DH 

 
The layouts of six different experimental set-ups are shown in Fig. 3. The length of the constant depth of 
the flume is 11.45m and the slope of the fixed bed is 1:30, whereas those are 1.5m and 1/20 of the wave 
basin. All the experiments were conducted with normal incident regular waves and the submerged 
breakwaters were not allowed to subject to wetting and drying coexisting field in any of the cases. 

The water surface fluctuations were measured using capacitance-type wave gauges with a frequency of 
100Hz, from which the wave heights and mean water levels are determined at those locations. The 
nearshore currents were visualized using particle tracking velocimetry (PTV) technique in wave basin 
experiments. 
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Figure 2. Layouts of the 6 different experimental setups. 
 
6. Results and Discussion 
 
The model results are firstly verified with data obtained from the wave-current flume experiments. Figure 4 
shows the time series of observed (yellow circles) and simulated (blue line) free surface elevations at 9 
different locations over a trapezoidal porous submerged mound placed under constant water depth of 
0.255m and having a minimum freeboard of 0.055m (case Ex01_A01). The mean diameter and the porosity 
of the permeable material were found to be around 0.02m and 0.44 respectively. van Gent (1995) 
concluded that, though the coefficients pp  depend on parameters like shape, aspect ratio or the 
orientation of the permeable material, the values 1000 and 1.1 can be used for pp  respectively, if the 
characteristic length-scale the 50d  is used. In addition, he suggested using a constant value for the 
empirical coefficient mC  of 0.34 for simplicity neglecting the complex dependency of coefficient AC  on 
the flow field.  The following parameters are computed for the porous material used in cases Ex01_A01 
and Ex02_B03 as suggested by van Gent (1995). 

β,α
β,α

 
Intrinsic permeability,   27 m100871  .K p

43.0Added-mass coefficient, C  A

Nonlinear drag coefficient,  023f .0C
 
Then the corresponding dimensional drag coefficients become: 
 
 066.4pa s-1, 552.13pb m-1 (18) 
 
The period of incident waves is 1.0s for the case Ex01_A01 and numerical computations are carried out 
with a space step of 0.0125m and a time step of 0.00667s. These are the space step and time step used for 
all the breaking and non-breaking 1.0s period waves. Numerical results show very good agreement with the 
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measured data except in the region behind the porous mound, where there exists a slight overestimation of 
the free water surface elevation. This could be probably due to the ignorance of higher-order porous 
damping rate terms, as the maximum porous layer thickness ratio, hhr s  is as high as 3.63. It should 
also be noted that, in lee of the submerged mound nonlinear waves are decomposed into shorter waves as a 
result of energy transfer from primary wave component into its higher harmonics. Therefore wave 
dispersivity as well as nonlinearity could be influential in the simulations. Simulated in-phase water surface 
fluctuations (red lines) over impermeable submerged breakwater are also depicted here for comparison. It 
clearly explains the effectiveness of including porous damping terms in numerical simulation, when 
dealing with submerged breakwaters constructed with permeable materials.   
  

 
 
Figure 4. Simulated free water surface fluctuations at 8.0m(a), 8.4m(b), 8.6m(c), 8.8m(d), 9.2m(e), 9.4m(f), 9.6m(g),  

10.0m(h), 10.4m(i) from wave generator boundary for case Ex01_A01 
 
Time series of simulated and observed free water surface fluctuations for case Ex02_B03 are shown in Fig. 
5. The wave period and the deep-water wave height in this case are 1.25s and 0.034m respectively. 
Numerical computations are carried out with a space step of 0.02m and a time step of 0.00833s for this 
case and the overall agreement of the simulated water level fluctuations with observed data seems to be 
confirmed. The wave is longer than the previous case, which makes the frequency dispersion 
characteristics become relatively less significant. Though the crest of the submerged mound of Ex02_B03 
is wider than that of case Ex01_A01, the height of the mound is only 0.1m. On the other hand minimum 
freeboard is found to be 0.148m resulting weak nonlinear profiles for the waves as it could be clearly seen 
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from Fig. 5. The higher-order porous damping rate terms also play less significant role as the maximum 
porous layer thickness ratio, hhr s  is 0.68. 

 

 
 

Figure 5. Simulated free water surface fluctuations at 8.0m(a), 8.4m(b), 8.8m(c), 9.2m(d), 9.6m(e), 10.0m(f) from 
wave generator boundary for case Ex02_B03 

 
Then the evolution of breaking (surf-zone) waves over submerged breakwater in 1DH (wave flume 
experiments) is investigated. Four different experiment results were utilized for the verification (note that 
Ex03_A02 is conducted with an impermeable breakwater to compare the characteristics). The mean 
diameter and porosity of the permeable materials used in these experiments were found to be 0.012m and 
0.44 respectively. Similar to previous cases, the following parameters are computed for the numerical 
model. 
 
Intrinsic permeability,   208 m10911.3 pK

43.0Added-mass coefficient, C  A

Nonlinear drag coefficient,  023f .0C
 
The corresponding dimensional drag coefficients become: 
 
 972.6pa s-1, 53.22pb m-1   (19) 
  

 
 

Figure 6. Simulated wave height distributions (a), and mean water level distributions (b) for cases Ex03_A01 and 
Ex03_A02 
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Figure 6 shows the observed and simulated wave height distribution (a) and the mean water level 
distribution (b) over a submerged breakwater (both permeable and impermeable) placed 2.0m offshore with 
a freeboard of 2.8cm. Prominent difference in the wave height distributions is not observed between 
permeable and impermeable condition, as the breaking criterion and the formulation for energy dissipation 
due to wave breaking is kept unchanged in the model. In addition to that narrow crest width (0.3m) makes 
the wave height reduction due to spatial porous damping become less significant compared that due to 
wave-breaking induced energy dissipation. Moreover, modeled wave heights are slightly underestimated in 
the lee of the breakwater particularly for case Ex03_A02 (impermeable), though the mean water levels 
show excellent agreement. Production of high turbulent kinetic energy leads to over-decaying of wave 
energy especially just behind the breakwater; hence insufficient recovery of the waves shoreward in the 
numerical model.      
 

 
 

Figure 7. Simulated wave height distribution (a), and mean water level distribution (b) for case Ex04_A02 
 

 
 
Figure 8. Simulated free water surface fluctuations at 3.6m(a), 3.2m(b), 2.8m(c), 2.4m(d), 2.0m(e), 1.6m(f), 1.2m(g),  

0.8m(h), 0.4m(i) offshore from still water shoreline for case Ex04_A02 
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Interestingly mean water level reduction of about 25% is observed if the breakwater is considered to be 
porous. This is mainly due to the flow through the breakwater (partial free-path to undertow through 
porous medium), which declines piling-up of water behind the breakwater. 

Figure 7 shows the wave height distribution (a) and mean water level distribution (b) over a broad-
crested submerged breakwater under regular waves with a period of 1.25s). Fairly smooth decay of waves 
was observed with little recovery behind the breakwater. Model predicted the surface water fluctuations 
with excellent agreement with experimental data throughout the surf zone (Fig. 8). Even the generation of 
some higher harmonics was caught in the simulation though the waves could be considered as relatively 
long. 
 

 
 

Figure 9. Simulated wave height distribution (a), and mean water level distribution (b) for case Ex05_A01 
 

 
 
Figure 10. Simulated free water surface fluctuations at 3.0m(a), 2.6m(b), 2.4m(c), 2.2m(d), 1.8m(e), 1.4m(f), 1.0m(g), 

0.6m(h), 0.2m(i) offshore from still water shoreline for case Ex05_A01 
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Numerical computations are also carried out for the wave evolution over a step-type submerged breakwater 
and the wave height distribution (a) and mean water level distribution (b) are shown in Fig. 9. Similar to 
case Ex04_A02, wave heights are well modeled, but the mean water levels are slightly overestimated over 
the stepped-crest of the breakwater. Time series of water level fluctuations also show some discrepancy 
near the shoreline, but the overall agreement is considered to be satisfactory. 
  

 
 

Figure 11. Simulated and observed wave height distribution (a), mean water level distribution (b), and  
nearshore current field (c) for case Ex06_A01 

 
Simulated wave height distribution (a), mean water level distribution (b), and the nearshore current field (c) 
for case Ex06_A01 (infinite number of step-type submerged breakwaters 105cm long, having 55cm gaps 
between them) are depicted in Fig. 11 and compared with observed data [note that the 1(c) shows the 
depth-averaged current velocities, whereas 2(c) shows the nearbottom current velocities]. Significant 
alongshore variation of wave heights, and mean water levels is observed particularly in laboratory 
experiments, which drives the formulation of secondary circulation (converging) near the shoreline and 
interestingly, the direction of currents is found to be almost parallel to the alongshore direction.  However, 
waves tend to break slightly earlier through the gap in the numerical simulation due to strong mixing of 
turbulent kinetic energy by advection and diffusion. This leads to relatively weaker alongshore variation in 
the wave height and mean water level distributions compared to observation, which weakens the strength 
of circulation currents behind the breakwater.  
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7. Conclusions 
 
A 2DH model has been developed to simulate waves and currents around porous submerged breakwaters 
based on a truncated version of Chen (2006) Boussinesq-type equations for waves and currents over porous 
bottoms. Numerical simulations are carried out maintaining water layer throughout the space domain at 
every time step. i.e. porous breakwaters are not allowed to subject to wetting and drying coexisting field. 
Numerical computation results are verified with a new set of data collected using wave-current flume and 
wave basin experiments. Wave set up is reduced with a considerable degree if the breakwaters are of 
porous material, which is an essential characteristic for the formation of secondary circulation (converging) 
near the shoreline. Irrespective of the weakly nonlinear properties of the present model, 1DH model results 
show excellent agreement and 2DH model results show qualitatively good agreement with the observed 
data for variety of wave conditions and structural dimensions confirming selection of appropriate values 
for the empirical coefficients of the porous media and free parameters of the wave breaking-induced energy 
dissipation sub model.   
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