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SIにおける角度の扱い

I 角度は無次元の組立単位 rad = m/m (= 1) で表すことになっている.
I SI において角度の扱いは, 長年の悩みの種.
I ある時期 (1960∼1995年) には, ラジアン (ならびに立体角のステラジアン)　は「補助
単位」という,〈取り扱い注意〉の特別なクラスに分類されていた. 今は, 組立単位と位置
づけることで一応落ち着いてはいる.

I 角度に独立の次元を与える (つまりラジアンを基本単位とする) 可能性について議論が
繰り返されている

- P.J. Mohr and W.D. Phillips “Dimensionless units in the SI,” Metrologia 52, 40 (2015). 簡易な方法で角度に
次元を与え, 単位系の一貫性を実現しようと試みているが無理が多い.
- K.R. Brownstein “Angles — Let’ s treat them squarely,” Am. J. Phys. 65, 605 (1997).
- P. Quincey “Angles in the SI: a detailed proposal for solving the problem” Metrologia 58 053002 (2021); プレ
プリント arXiv:2108.05704.
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角度の歴史

I 天文, 測距などの分野で重要な角度を定量的に測るために, 古代からさまざまな道具や単
位が用いられてきた.

I 現在でも広く用いられている単位である「度」(◦, degree) はバビロニア起源といわれてい
る. — 1回転 (turn) を 360 (割りやすい数, 1年のおよその日数) で分割した角の大きさ.
360 = 4× 2× 32 × 5

I メートル法制定時には, 10進法の grade (仏度, = turn/400)という単位も作られたが普
及しなかった.
400 = 4× 22 × 52

ブルバキ (著), 笠原皓司, 清水達夫 (訳)『数学原論 位相 3』(東京図書, 1968) 第 8章, 歴史覚えがき
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Calculator

角度の単位 DEG, RAD, GRD の切り替え
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Grade protractor

Wikipedia
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六分儀

I 左: 伊能忠敬の六分儀 (JR佐原駅, 最小目盛 1′ = (1/60)◦)
右: 航海用　 (いずれも wikipedia から)

I 精密な角度測定と時計が大航海時代を実現した.
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弧度法 vs 度数法

I 高校では数 Iは度数法 (3角比), 数 II, III は弧度法 (弧長, 微積分). (3角関数の定義が知
らない間に変わっている)

I 微積分を習わない人にとっては弧度法のありがたみはない.
I 弧度法が角度の唯一の測り方ではない.
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ラジアン分度器
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弧度法 (circular measure)

I 角度を円弧の長さ s と半径 R の比 s/R として定量する
I 18世紀半ば, オイラーによって導入された.
I 弧度法の単位名称としてラジアン (radian) が使われるようになったのは 19世紀後半.
I 国際単位系 SI も弧度法に依っている. 弧度法の角度の定義 θ := s/R にしたがって, 無
次元の組立単位 rad = m/m (= 1) で表すことになっている.

北野 (阪大) 単位に次元をあたえたらどうなるか QUATUO 研究会 2026.1.10–11 9 / 41



オイラーの公式
I limn→∞(1 + 1/n)n = e から,

zn = (1 + iα/n)n → eiα (n → ∞)
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SI と拡張 SI

I 単位系の 3要素　 (次元, 単位, 標準)
I SI とその角度拡張

次元 単位 標準
時間 T s ∆νCs
長さ L m c0
質量 M kg h
電流 I A e
熱力学温度 Θ K kB
物質量 N mol NA
光度 J cd Kcd
角度 A rad η

I 次元の数と選び方は決定的な影響をもたらす．
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次元の同値関係 — (ローカル)記法

I 単位系 u での量 A, B( 6= 0) について, A/B ∈ R ⇔ A u∼ B

A SI∼ B SIで次元が等しい

A SI+∼ B 拡張 SIで次元が等しい

角度については, θ SI∼ 1, θ SI+∼ rad 6= 1 である.
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次元の意味 — RGB vs GB
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次元の意味 — RGB vs GB
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次元の付与のメリット

I (単位の統一という趣旨とは裏腹に,) 次元を与えることで非 SI単位を含む量の計算が正
しく行えるようになる.

I 例: 速度

1mile/h = 1609m/3600 s = 0.447m/s

I 角度に独立次元を与えることで, ラジアン以外の角度の単位が混在しても誤りなく計算
が進められる.

I 角度を含む「次元解析」も可能になる.
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次元なしの問題点
I 　角度に次元を与えないと, rad ≡ 1 のように特定の単位を特別扱いすることになる. そ
して, 関係

π rad = 180◦ = 200 dgrad = 0.5 turn

から, ◦ ≡ π/180, dgrad ≡ π/200, turn ≡ 2π など多くの無次元量が派生する.
I 一方で,

1 = 1 rad = 1 rad2 = 1/rad = · · ·

が成り立ち, 方程式の任意の場所 (項)に “1 = rad” を挿入できる；
I 曖昧さを生じる.

f = 60 /s = 60× 1/s = 60 rad/s
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SIや単位系に関する誤解

1. MKSA... なのだから nm, g などを使ってはいけない.
I prefix の使用はむしろ推奨されている

2. 非 SI単位は全く使ってはいけない.
I 実際上,「SI基本単位」を別の単位に変える程度は許容しうる (と思う).

km/h など (換算は簡単)
I 「組立単位」で非 SI単位を使うと換算が厄介なので止めた方がよい.

psi (Pounds per square inch), mpg (Miles per gallon) など
3. 異なる単位系間でも, 単位の換算は可能である.

I 小さい次元から大きい次元への変換は不可能: 電荷の場合: esu :=
√

dyn/cm (Gauss) は C
と次元が異なる.
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角度の独立次元化
I 半径 R SI+∼ m の円の一部である円弧の長さ s SI+∼ m と中心からそれを見込む角度 θ

SI+∼ rad
の一般的関係

s = η θR

に注目する. θ, R に関する複比例の式で, η SI+∼ 1/rad はその比例定数.
I これを用いると, 全円周の長さを

s◦ = (π/180◦)(360◦)R
= (2π/turn)(1 turn)R
= (1/rad)(2π rad)R = · · · = 2πR

のように角度の単位に依らずに表せる.
I 次元つき係数の変換則 η = π/180◦ = 2π/turn = 1/rad = · · · が単位の違いを吸収して
いる.
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定数 η の必然性

I 単位系に独立次元を追加する場合, 当該次元を含む何らかの定数を追加する必要がある.
I 電荷を力で測る 3元電磁気学を 4元化するために µ0

SI∼ N/A2 あるいは e SI∼ A s が導入
された.

I 物質量にも次元が与えられており, アボガドロ定数 NA
SI∼ mol−1 を伴っている.

I このような一般則を踏まえれば, 角度に独立次元を与えるにあたって定数 η
SI+∼ rad−1 の

導入は不可避である.
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3角関数の微分公式
I 三角関数 (一般に非同次関数) の引数は無次元でなければならない. もし, ξ が次元を持
てば, sin ξ = ξ − ξ3/6 + · · · が次元の異なる量の和になってしまう. θ SI∼ rad なので,

╳ sin θ ◯ sin ηθ

I 微分公式は

d
dθ

sin ηθ = η cos ηθ SI+∼ 1/rad

I 正規化された角度 θ̄ := ηθ に対しては, (d/dθ̄) sin θ̄ = cos θ̄.
I 指数関数の時間微分は以下のようになる;

d
dt exp iηωt = iηω exp iηωt, d

dt exp iω̄t = iω̄ exp iω̄t
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角度の自然な単位 — radian と turn
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radian vs turn — 2通りの無次元化
I 正規化（無次元化）角度

θ̄ = ηθ =
θ

rad

角度をラジアンで表したときの数値である.
I η = 1/rad = 2π/turn であることから

θ̄ =
2πθ

turn
= 2πn

n = θ/turn は角度を turn で表した場合の数値である.
I 3種類の角度

2πn = θ̄ = ηθ
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回転運動
I 質点 m (位置 r) が軸 u の周りを回転. ∆s = η∆θr を 3次元化した∆s = η(∆θu)× r
を ∆t で割ると,

v = ηω × r, ω = u dθ
dt

SI+∼ rad/s :角速度

I 運動エネルギーは

E =
m
2

v2 =
m
2
(ηω × r) · v =

1

2
(ηr × mv) · ω

E = p · v/2 と比較すると, 角運動量 (ω の共役量) は

L := ηr × mv = ηr × p SI+∼ J s/rad

I 現行の SIでは, L̄ := r × p SI∼ J s と定義され, 運動量と位置の積である「作用 (action)」
と同じ単位が付与されている.

I トルク τ := dL/dt = ηr × f SI+∼ J/rad は「角度あたりの仕事」という分かりやすい次元
を持つ.
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調和振動
I 調和振動の運動方程式は

ṗ = −kx, ẋ = p/m

k SI+∼ N/m はバネ定数, m SI+∼ kg は質量.
I 正準変換 P = p/

√
ζ, X =

√
ζx (ζ :=

√
km SI+∼ J s/m はインピーダンス) を行うと,

Ṗ = −ω̄X , Ẋ = ω̄P

ω̄ :=
√

k/m SI+∼ 1/s は, ω とは次元が異なり, f とは数値が異なる.
I 複素変数 a := (X + iP)/

√
2

SI+∼
√

J s を導入すると,

ȧ = −iω̄a

となり, 解は a(t) = a(0)e−iω̄t .
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ラジオ少年ファインマン — 2π はどこから

ある日のこと本か何かに載っていた公式を見ていると, 共振回路の周波数の公式を
見つけたのです. それは (2π

√
LC )−1 というもので, ..., π があるというのに, 円は

いったいどこにあるのでしょうか？
　　 (... コイルが丸いから？ 　四角いコイルでも同じ式 ...)
現在ではもっとよくわかっているつもりですが，それでもまだ心の隅ではどこに円
があるのか, π がどこからでてきたのか, どうも未だ釈然としないところがあります.
<.......>

R.P. ファインマン (著), 大貫昌子, 江沢 洋 (訳)『聞かせてよファインマンさん』(岩波書店, 2009) p. 210.

北野 (阪大) 単位に次元をあたえたらどうなるか QUATUO 研究会 2026.1.10–11 24 / 41



正準変数対 (1)
I 「作用・角変数」とよばれている変数対

作用 I := a∗a SI+∼ J s

次元なし角度 θ̄ := − arg a SI+∼ 1

を導入すると, ハミルトニアンは

H = (ω̄/2)(X2 + P2) = ω̄a∗a = ω̄I

I 正準方程式は

dI
dt =

∂H
∂θ̄

= 0,
dθ̄
dt = −∂H

∂I = −ω̄

解は I (t) = I (0), θ̄(t) = −ω̄t + θ̄(0) であり, a(t) の運動を再現する.
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正準変数対 (2)

I 別の正準変数対として,

角運動量 L := Iη SI+∼ J s/rad

次元付き角度 θ := θ̄/η
SI+∼ rad

を導入することも可能. ハミルトニアンは

H = ωL

I 回転運動との対応がよくなり, θ̄, ω̄ といった変数も不要となる.
I しかし, 元の系は回転とは関係が薄く, 抽象的な相空間に無理に角度次元を導入している
ことになる.
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3種類の振動・回転変数 — f , ω̄, ω

I 回転や振動に関して 3種類の時間変化の変数が存在する.

2πf = ω̄ = ηω

I ω̄ と f は無次元で大きさが 2π 異なっている. ω だけが角度を含んでいる.
I 角度が無次元なら, ω̄ と ω は縮退する.
I 振動の時間周期 T SI+∼ s は ω̄T = 2π (eiξ の周期) を満たすので, 周波数は

f := 1/T = ω̄/(2π) で与えられる.

北野 (阪大) 単位に次元をあたえたらどうなるか QUATUO 研究会 2026.1.10–11 27 / 41



量子化とプランク定数 — 前期量子論

I 1900年, プランクは黒体からの輻射スペクトルの問題を解決するために, 光がエネル
ギー E = hf をもつ塊として振る舞うと仮定した. f は光の周波数, h ∼ 6.55× 10−34 J s
はプランク定数とよばれることになる定数であり,「作用」の次元を持つ. 光電効果でも
その意味が確認され, 後に光子とよばれるようになった.

I その後, さまざまの現象に, この定数が関与していることが明らかになった. コンプトン
効果において, 波長 λ の光が運動量 p = h/λ をもった粒子と考えうることが示唆された.

I ド・ブロイは電子などの物質粒子が λ = h/p の波長を持つ波として振る舞うことに気づ
いた.
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ボーア・ゾンマーフェルトの量子条件

I 水素原子の古典モデルから, 発光スペクトルを説明するために, ボーア・ゾンマーフェル
トの量子条件 (1913年, 1916年)が考えだされた. 正準座標対 (q, p) に対して

S :=

∮
C

p dq =

∫
A

dp ∧ dq = nh SI+∼ J s (n = 1, 2, . . .)

S は相平面で周期閉軌道 C = ∂A が囲む面積. この式は他の正準変数対についても成り
立つ.
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例: 調和振動子

I 光はマクスウェル方程式から導かれる古典的な調和振動子で表される. 作用は (X ,P)-
平面の半径

√
2I の円軌道の内部の面積であることから, 量子条件は

S = 2πI = 2πE/ω̄ = E/f = nh

となる. E = ω̄I はエネルギーである. これより光のエネルギーが, E = nhf と量子化さ
れることが確認される.
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方向量子化

I 中心力下の運動における角度の自由度に対して, 正準変数対 (L, θ) を導入する. 角運動
量 L SI+∼ J s/rad が一定なので, 作用は

S =

∫ 2π rad

0
L dθ = (2π rad)L =

2πL
η

= nh

と書け, 角運動量が L = nȟ と量子化される.
I 角運動量の量子化の単位は h̄ ではなく, ȟ := ηh/(2π) SI+∼ J s/rad である.
I 円運動を仮定すると p = nh/(2πr) となる (ド・ブロイの条件).
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理想気体のエントロピー　 (Sackur-Tetrode 1911–12)
W. Grimus: “100th Anniversary of the Sakur-Tetrode Equation”, Ann. Phys. (Berlin) 525, A32 (2013) ; キッテ
ル: 熱物理学 (1971, 丸善)

I 古典的な理想気体のエントロピーの表式に h が含まれている.

S
kBN = ln

[(
2πmkBT

h2

)3/2 V
N

]
+

5

2

I h は対数の中に入っているので, 数値が変わっても定数が変化するだけ. 変化分 ∆S に
は影響しない.

I エントロピーの絶対的な値は S(T = 0) = 0 (熱力学第 3法則) を仮定すれば求めること
ができる.

S(T )− S(0) =
∫ T

0

dQ(T ′)

T ′
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エントロピーの微視的意味
I n 次元超球体の体積

Bn(R) =

∫ R

0

2πn/2

Γ(n/2)rn−1dr =
πn/2

Γ(n/2 + 1)
Rn

I N 個の原子が体積 V に閉じ込められている場合の相空間の体積は
(1/2m)(p2

1 + · · ·+ p2
N ) ≤ E とすると,

V (E ,V ,N ) =

∫
(dx1)3

∫
(dp1)3 · · ·

∫
(dxN )3

∫
(dpN )3

= B3N (
√
2mE)× V N =

(2πmE)3N/2V N

Γ(3N/2 + 1)

I 自由度 3N の量子セルの体積は h3N であることから, エントロピーは

S = kB ln V (E ,V ,N )

h3N N ! = kB ln W

I π は相空間 (円柱) の体積から来ている.
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Sackur (1880–1924) と Tetrode (1895–1931)
O. Sackur: Annalen der Physik 36, 958 (1911).
H. Tetrode: Annalen der Physik 38, 434 (1912).

I 水銀の熱容量 (固体, 液体), 潜熱 (相変化), 蒸気圧に関する実験結果から気体の S(T ) を
求めた.

I その p, T 依存性から h をかなり正確に定め，プランク定数との一致を確認した．
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ディラックの気づき
I ディラックはハイゼンベルクの行列 (後に演算子) の時間発展が反対称積

[Â, B̂] := ÂB̂ − B̂Â を用いて表されることに気づいた.
I さらに, その古典極限

2π

ih [Â, B̂]
cl→ {A,B} :=

∂A
∂q

∂B
∂p − ∂A

∂p
∂B
∂q

が解析力学のポアソン括弧式 {A,B} になることを, 対応原理ボーア・ゾンマーフェルト
の条件を用いて示した.

I 因子 h はポアソン括弧式の微分の分母が担う qp (作用) の次元と符合している. (i はエ
ルミート演算子の反交換積が反エルミートになるのをエルミートに戻すための因子で
ある.)

I この段階では h を用いている.
P.A.M. Dirac “The fundamental equations of quantum mechanics,” Proc. Roy. Soc. A 109, 642 (1925).
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正準量子化
I 古典力学における正準座標の条件 {qi , pj} = δij (i, j は自由度) に対応する演算子の条
件は

[q̂i , p̂j ] = ih̄δij 1̂

と書ける. 恒等式 (
x d

dx − d
dx x

)
f (x) = −f (x)

と比較することで, 表現

q̂i → qi , p̂j →
h̄
i
∂

∂xj
(1)

が得られる.
I 「正準量子化」とよばれる手続きで, 量子条件の一般形である. 左辺には回転の要素はな
いので, ȟ ではなく, h̄ が適切である.
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ディラック定数

I ディラックは教科書 [?]において, h に代わって h̄ = h/(2π) SI+∼ J s を導入した. ディラッ
ク定数ともよばれる.

I 量子論の初期, アインシュタインの式やド・ブロイの式は一般的な変数である周波数や
波長を用いて, E = hf , p = h/λ と書かれ, プランク定数 h もそれに応じて定義された.

I 演算子法の影響などで, (2π が表に出にくい) 角周波数と波数の使用が一般化し,
E = h̄ω, p = h̄k と書かれることが多くなった.

I しかし, 角度に次元を与えると, 右辺だけが rad を含むようになり, 次元の不整合を生
ずる.

I 本来, ω̄ = ηω, k̄ := ηk を用いて, E = h̄ω̄, p = h̄k̄ と書かれるべき式である.
P.A.M. Dirac “The Principles of Quantum Mechanics, 1st ed.” (The Clarendon Press, 1930).
朝永振一郎『量子力学 I』(第 2版) (みすず書房, 1969) 19–20節. (II巻を含め h で一貫している.)
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量子波
I 平面波の位相 θ̄

SI+∼ 1 にこれらを代入すると,
θ̄ = −ω̄t + k̄ · x = h̄ (−Et + p · x) = h̄S

I 古典量子対応から波動関数 (平面波) は

ψ(t, x) = eiθ̄ = eiS/h̄

I 微分 ∂ψ/∂t = −i(E/h̄)ψ , ∇ψ = i(p/h̄)ψ から, 量子的な波動方程式を作るための対応
規則

E → ih̄∂/∂t, p → (h̄/i)∇

が得られる.
I 古典的な関係式 E = p2/(2m) + V (x) にこれらを適用することで, シュレディンガー方
程式が h̄ で表される;

ih̄ ∂
∂tψ =

[
− h̄2

2m∇2 + V (x)
]
ψ
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3種のプランク定数— h, h̄, ȟ

I 角度に次元を持たせる立場では, プランク定数には 3つのバリエーションが考えうる;

h
(2π)

= h̄ =
ȟ
η

h と h̄ は角度の次元は含まず, 大きさが 2π 異なる. ȟ は角運動量の量子化単位である.

hf = h̄ω̄ = ȟω (= E)

が成り立つ.
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角度変数のまとめ

次元 　　　1 　　　1 　　　　A
全周 　　　1 　　　2π 　　　　2π/η

　　　
角度 　　　n = θ/turn　　　θ̄ = θ/rad　　　　θ
時間変化率 　　　f 　　　ω̄ 　　　　ω
プランク定数　　　h 　　　h̄ 　　　　ȟ
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まとめ

I 角度の次元化について, 何をわざわざ面倒な議論をするのかと思われた方が多いだろう.
それは弧度法にすっかり馴染んでいるからである.

I 日常生活では「ラジアン」ではなく,「度」を用いている.
I 角度に関する「言文不一致」

— 角度の次元化によって, 口語である〈度〉を用いても, 文語である〈物理方程式〉が書
けるようになる.

I η の扱いを通して, 電磁気を 3元, 4元単位系で扱う場合の本質的差異に気づいたり,
h̄ = 1, h = 1 などとプランク定数を消し去る軽挙を反省する.
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