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弱値との関係モチベーション
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議論

実験結果

実験セットアップ𝑨𝟐(±)の値の測定⽅法

背景＆⽬的

光⼲渉計内部での単⼀光⼦の⾮局在、局在、超局在の観測
広島⼤学⼤学院先進理⼯系科学研究科 福⽥ ⻯也、飯沼 昌隆、松本 侑⽃、ホフマン ホルガ

⼲渉縞（測定確率）の実験結果
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!𝐴 = |1⟩⟨1| − |2⟩⟨2|

光路物理量

研究の⽬的  :  𝑨𝟐(±)の値の測定とその結果の考察

𝜽𝒐𝒖𝒕𝟐 ≈ 𝑷 𝑯 +

H

V

𝜽𝒐𝒖𝒕	

𝒔𝒊𝒏𝜽𝒐𝒖𝒕

出力	

偏光回転⾓𝜽𝒐𝒖𝒕𝟐 の⼆乗

光路1

光路2

V偏光状態の
光子

𝜃! ≪ 1

位相𝝓

−𝜃b
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PBS

𝑷 𝑯| + =
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𝑵 𝑯 +𝑵(𝑽)

V偏光状態のカウント数
	𝑁(𝑉)

H偏光状態のカウント数
 𝑁(𝐻)

H偏光への反転確率 𝑷(𝑯|+)

V

H

V

H

V

H

光路と偏光を弱く相互作⽤

位相𝟎° < 𝝓 < 𝟏𝟖𝟎°の範囲で𝑷(𝑯|±)を測定

APD

APD

808nm	半導体レーザー
強度13	mW

𝑉
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出⼒+の結果

測定状況依存性 測定確率との関係

測定確率の実験結果

𝑨𝟐 ± の値

⾮局在、局在、超局在

𝑨𝟐 ± =
𝑷 𝑯 ±
𝜽𝟎𝟐

偏光と光路の弱い相互作⽤を介して、𝑷(𝑯|±)を測定し、𝑨𝟐(±)の値を評価した。
その結果、 局在、⾮局在、超局在が観測され、対応する𝑨𝟐(±)の値は
𝑨𝟐 ± = 𝟏, 𝟎 ≤ 𝑨𝟐 ± < 𝟏, 𝑨𝟐 ± > 𝟏であることが分かった。

位相𝝓依存性から、局在、⾮局在、超局在、および𝑨𝟐(±)の値が
測定状況に依存して決まることが分かった。
また、局在、⾮局在、超局在の光⼦と測定確率には相関があることも分かった。

明瞭度（出⼒＋）= 𝟎. 𝟗𝟓𝟐𝟓 ± 𝟎. 𝟎𝟎𝟎𝟒

明瞭度（出⼒ー）= 𝟎. 𝟗𝟔𝟐𝟖 ± 𝟎. 𝟎𝟎𝟎𝟒

出⼒ーの結果

出⼒+の結果 出⼒ーの結果

先⾏研究 今回の研究

𝐏 𝐇 ± ≫ 𝜽𝟎𝟐 超局在 

𝑨𝟐 ± ≫ 𝟏

𝟎 ≤ 𝑨𝟐 ± < 𝟏

出⼒＋ : 𝟎° ≤ 𝝓 < 𝟗𝟎°

𝟎 ≤ 𝐏 𝐇 ± < 𝜽𝟎𝟐 ⾮局在 

出⼒ー : 𝟗𝟎° < 𝝓 ≤ 𝟏𝟖𝟎°

𝐏 𝐇 ± = 𝜽𝟎𝟐 局在

𝑨𝟐 ± = 𝟏

出⼒＋ : 𝝓 = 𝟗𝟎°

出⼒ー : 𝝓 = 𝟗𝟎°

出⼒＋ : 𝟗𝟎° < 𝝓 ≤ 𝟏𝟖𝟎°

出⼒ー : 𝟎° ≤ 𝝓 < 𝟗𝟎°

𝜙

𝜃!	

−𝜃!	

𝜙

𝜃!	

−𝜃!	

𝜙

𝜃!	

−𝜃!	

局在 局在

⾮局在

超局在超局在

出⼒	+

出⼒ −

測定状況に依存
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A2(+)出⼒+の𝑷(𝑯|±)と𝑨𝟐(+)の結果

𝑨 ± 𝟐を実験的に定義

𝑷 𝑯 ± ,𝑨 ± 𝟐は
位相𝝓に依存 測

定
確

率

⾮局在 ⾮局在

局在

超局在 超局在

出⼒+ 出⼒−

⾮局在
頻度が⾼い

超局在
頻度が低い

局在
50%の確率

単⼀光⼦⼲渉実験

位相	𝜙

？

？

⼲渉計内部の物理現象光⼦

ホフマンによるフィードバック補償法[1]
固有状態以外の測定で物理量6𝑨の
測定値と測定誤差が実験的に評価可能

中性⼦⼲渉実験[2]
経路の分岐⽐が4:1の状況下で
測定値𝑨(±)と測定誤差を評価

⼆重スリット実験の理論的解析[3]
𝑨𝟐(±)	の値が測定可能

※値𝑨 ± 𝟐は測定値の⼆乗ではない

𝐴 ± & ≠ 𝑀'
&

𝐴 + o =
+ 8𝐴 𝜓pq
+ 𝜓pq

o

測定値を𝑀' = 𝑅𝑒 ' () *
𝑓 𝜓 とした時、

𝜓!" =
1
2
	 1 + |2⟩)

位相	𝜙

𝐴 = +1

𝐴 = −1

± =
1
2
	 1 ± 𝑒!#|2⟩)

|+⟩

= 𝑨 + 𝟐𝑷 + + 𝑨 − 𝟐𝑷(−)

|−⟩

𝑨𝟐(+)の値

𝚫𝑨 𝟐 = 𝑨 ± 𝟐

,𝑨の不確定性

𝑃(±) : 測定確率

|2⟩

|1⟩

𝑨𝟐(−)の値

出⼒＋で検出したとき (𝑷 + = 𝟏,𝑷 − = 𝟎)

(終状態 : 
± = #

$
	 1 ± 𝑒%&|2⟩))

𝚫𝑨 𝟐 = ,𝑨𝟐 x𝐴 = 0

出⼒−で検出したとき (𝑷 + = 𝟎,𝑷 − = 𝟏)

𝜽𝟎𝟐 = 𝟎. 𝟎𝟏𝟒𝟖𝟐 ± 𝟎. 𝟎𝟎𝟎𝟎𝟑

⾮局在

𝐴 − o =
− -𝐴 𝜓pq
− 𝜓pq

o

(= 𝜀zo ∶	 )⼩澤の測定誤差

𝜽𝟎𝟐 = 𝟎. 𝟎𝟏𝟓𝟖𝟕 ± 𝟎. 𝟎𝟎𝟎𝟎𝟑

𝜽𝟎𝟐 = 𝟎. 𝟎𝟏𝟓𝟖𝟕 ± 𝟎. 𝟎𝟎𝟎𝟎𝟑 𝜽𝟎𝟐 = 𝟎. 𝟎𝟏𝟒𝟖𝟐 ± 𝟎. 𝟎𝟎𝟎𝟎𝟑


