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A new model for nearshore nonlinear water wave is established through the Galerkin
Chebyshev spectral approach on the vertical direction. The model is based on the spatial-
temporal separation conception. The Galerkin Chebyshev spectral approach is applied to
solve the Laplace equation, while the Zakharov’s expression of the free surface boundary
condition is considered as the evolution equation of the free surface and integrated tempo-
rally. The accuracy and efficiency of the model are confirmed by the results of simulation
of water waves over even bottom, nonlinear wave shoaling and harmonic generation over a
submerged bar. Finally, the model is used to study the wave blocking phenomenon due to
strong opposing currents. Both the location of the blocking point and the wave structure
near the point are well presented.

Keywords: Chebyshev spectral approach; wave blocking; strong currents.

1. Introduction

The interaction between nearshore waves and currents is a very important and
fundamental topic. As the natural consequence of the wave encountering strong op-
posing current, a striking nonlinear phenomenon called wave blocking often appears
in the region of river mouth. The numerical study of the wave blocking phenomenon
is necessary for a better understanding of the physical processes of nearshore hydro-
dynamics and morphological changes near the river mouth.
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However, the numerical simulation of the wave blocking phenomenon demands
efficacious numerical model which is capable of dealing with the inherent high non-
linearity and large wave number of this problem. The classical Boussinesq equations
(e.g. [Peregrine, 1967; Nwogu, 1993]) do not have a correct form of Doppler shift in
connection with wave-current interaction. Chen et al. [1996] extended the Nwogu
[1993]’s Boussinesq equations incorporating correct Doppler shift to simulate the
wave transformation with a strong opposing current. However, their dispersion rela-
tion was not able to handle the large wave number generated by the ambient current.
Strong bottom friction was also applied in order to stablize the simulation, which
eliminated the wave structures near the blocking point. Madsen et al. [1999] treated
the case with the same computational conditions through their enhanced high order
Boussinesq type equations and showed a great advancement.

Stimulated by the rapid advancement in the capacities of computer, inspired by
Madsen’s enhanced Boussinesq type equations, the nonlinear mild slope equations by
Isobe [1994] and the newly developed High Order Spectral method for the simulation
of water waves from Mei et al. [2005], a new model is conceived and implemented for
the 1DH cases in this study. The new model borrows the philosophy of eliminating
the vertical coordinate with approximation of the flow field by the polynomials
and the temporal-spatial decoupling-coupling scheme from the High Order Spectral
method. Chebyshev polynomials are adopted to solve the spatial equation. The
nonlinearity is dealt with high order.

It is expected that (1) the new model will greatly enhance the dispersion relation
and nonlinear properties along with moderate increment of the need for computa-
tional resources, compared with conventional models, and (2) the 1DH model can
be extended to 2DH without more theoretical treatment.

2. Physical description of the problem and governing equations

The physical domain of the nearshore flow field is described in Fig. 1. The continuous
water body is enclosed by a free surface, a fixed bottom and two lateral boundaries.

Under the irrotational and inviscid assumption, potential flow theory is conve-
nient for theoretical and numerical treatment. Define a Cartesian coordinate system
r ≡ (x, y, z), and let (x, y) = x be the horizontal coordinates, z the vertical coordi-
nate, positive upward, and z = 0 the mean free surface. The flow is described by a
velocity potential Φ(r, t), which satisfies the Laplace equation,

∇2Φ(r, t) = 0 (1)

where Φ(r, t) is defined as ∇Φ(r, t) = u. On the free surface, the dynamic boundary
condition can be written as (2),

∂Φ
∂t

+
1
2
|∇Φ|2 + gz = −P

ρ
(2)
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∇2Φ = 0
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z = η(x, y, t)

Fig. 1. Physical domain of the nearshore flow field.

where g is the acceleration of gravity, P is the pressure at the free surface, and ρ is
the water density. Assume the free surface can be represented by z = η(x, t) where
η is a continuous and single-valued function of x, that means that the wave is not
overturned. The kinematic boundary condition is obtained as (3),

ηt + ∇xη · ∇xΦ − Φz = 0 , z = η(x, t) (3)

where ∇x ≡ (∂/∂x, ∂/∂y) denotes the horizontal gradient.
In the context of High-Order Spectral(HOS) Method and the newly developed

high-order Boussinesq type Equations, the Zakharov [1968]’s expression of free sur-
face boundary condition is favored. This re-arrangement of the original Eulerian
form of free surface boundary conditions (2) and (3) is first derived by Zakharov
[1968] when studying weakly-nonlinear slowly-modulated waves through the nonlin-
ear Schrödinger equation [Zakharov, 1968].

As in Zakharov [1968], we define the potential on the free surface

Φs(x, t) ≡ Φ(x, η(x, t), t) (4)

Applying chain rules on (4):

Φt(x, η, t) = Φs
t(x, t) − Φz(x, η, t)ηt (5)

∇xΦ(x, η, t) = ∇xΦs(x, t) − Φz(x, η, t)∇xη (6)

The dynamic and kinematic free surface boundary conditions (2) and (3) can be
rewritten as:


ηt + ∇xη · ∇xΦs − (1 + ∇xη · ∇xη)Φz(x, η, t) = 0

Φs
t + gη +

1
2
∇xΦs · ∇xΦs − 1

2
(1 + ∇xη · ∇xη)Φ2

z(x, η, t) = −P

ρ

(7)

An apparent advantage of using (7) instead of its orginal Eulerian form as free
surface boundary conditions is that given the initial values of η and Φs, (7) can be
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directly integrated in time for the new values of η and Φs as long as the surface ver-
tical velocity Φz(x, η, t) is known. While the surface vertical velocity Φz(x, η, t) can
be obtained by solving the Laplace equation (1) with the given Φs as the Dirichlet
boundary condition. At the bottom, the normal velocity of the flow is zero,

∂Φ
∂n

= 0 (8)

where n is the normal direction of the boundary. If we define z = −h(x) to describe
the topographic variation, (8) can be written as:

Φz + ∇xh · ∇xΦ = 0 , z = −h(x) (9)

3. Galerkin Chebyshev Spectral Approach for the Laplace Equation

3.1. Choice of base functions

The basic idea for solving differential equations through the spectral approach is to
assume that the unknown function can be approximated by a linear combination of
several “base functions”. With strategies to minimize the residual function, all the
coefficients for the “base functions” are settled. It is important to choose a proper
set of base functions.

An appropriate set of base function should be efficient, meaning that the results
converge rapidly as the increase of the number of base functions. Here the hyperbolic
functions cannot be considered to be a good candidate. Indeed the hyperbolic func-
tions are the exact solutions of the Laplace equation, however, the appearance of
the local wave number k weakens the efficiency of approximation. The local wave
number is a function of space and period, and cannot be pre-determined. Therefore
two schemes are adopted in literature. The first is using the dispersion relation of
small amplitude wave theory directly, as in mild slope equation and Nadaoka [1994]’s
attempt to extend it to the nonlinear cases; the second is the wide band simulation
in HOS, which commonly utilizes 1,000 hyperbolic functions with wave number k

from 2π/L to 1,000 × 2π/L, where L is the length of the computational domain.
The former is not able to represent the phenomena related to nonlinear shoaling
and dispersion, and the latter obviously costs too many computational resources.

Well computational behavior is another requirement for obtaining creditable re-
sults. This requirement cannot be satisfied by the power functions. As increasing the
number of base functions (the highest order of the power function), the condition
number of the computational matrices will increase rapidly. In function approxi-
mation, the best square polynomial approximation of a given function with power
functions to be the base functions generates the notorious Hilbert matrices, which
are canonical examples of ill-conditioned matrices. Large computational error may
be incurred by numercial round-off.

The shape of convergence domain is disadvantageous for the utilization of power
functions as well. For power series, the domain shape is a disk, which means that
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a singularity at the imaginary axis will make the model blow up. In fact, it really
happens when deriving formula of cnoidal waves with power series expansion.

In recent development of the spectral methods for partial differential equations,
Chebyshev orthogonal polynomial functions are frequently adopted. This set of func-
tions is easy to compute, orthogonal, converges rapidly, and has a large convergence
domain.

The Chebyshev polynomials of the first kinda are a set of orthogonal polynomials
denoted as Tn(x). The simplest definition of Chebyshev polynomials is the following
recurrence relation:

T0(x) = 1

T1(x) = x , x ∈ [−1, 1]

Tn+1(x) = 2xTn(x) − Tn−1(x)

(10)

The trigonometric definition (11) is convenient for the calculation with inner
product.

Tn(cos(θ)) = cos(nθ) (11)

The inner product along with Chebyshev polynomials is defined as:

(f, g) ≡
∫ 1

−1
fg

dx√
1 − x2

(12)

Therefore for a given function f(x) = aiTi(x), the coefficient ai can be expressed as:

ai =
2

πci
(f, Ti) (13)

where

ci =

{
2 , i = 0

1 , i ≤ 1
(14)

For the convenience of description, we define

〈Ti, f〉 ≡ 〈f, Ti〉 ≡ 2
πci

(f, Ti) (15)

3.2. Regulation of the computational domain

In order to expand the velocity potential to the Chebyshev series with respect to the
vertical coordinate, we map the vertical computational domain z ∈ [−h(x), η(x)]
into s ∈ [−1, 1]. Therefore the uneven computational domain is mapped to a
rectangle.

aChebyshev polynomials mentioned in this paper are all abbreviated forms for Chebyshev polynomials of
the first kind.
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Denoting

h+(x) = h(x) + η(x) (16)

h−(x) = h(x) − η(x) (17)

s(x) =
2z + h−(x)

h+(x)
(18)

The velocity potential Φ can be written as

Φ(x, z) = Φ
(
x,

sh+(x) − h−(x)
2

)
= ϕ(x, s) (19)

Using chain rules on the Laplace equation (1), we obtain

h+(x)2∇2ϕ(x, s) = mijks
i ∂j+k

∂xj∂sk
ϕ(x, s) = 0 , i = 0, 1, 2; j + k ≤ 2 (20)

where

m020 = (h+)2 (21)

m111 = −2h+∇xh+ · (22)

m011 = 2h+∇xh
− · (23)

m101 = 2(∇xh+)2 − h+∇2
xh+ (24)

m001 = −2∇xh− · ∇xh
+ + h+∇2

xh− (25)

m202 = (∇xh+)2 (26)

m102 = −2∇xh− · ∇xh
+ (27)

m002 = (∇xh−)2 + 4 (28)

The mijk not mentioned from (21) to (28) is equal to 0.

3.3. Chebyshev series expansion for regulated Laplace equation

The target unknown function ϕ(x, s) can be approximated as ϕN (x, s)

ϕN (x, s) =
N∑

n=0

an(x)Tn(s) (29)

Denoting the differential operator in (20) as

Lijk = si ∂j+k

∂xj∂sk
(30)
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we obtain

LijkϕN (x, s) =
N∑

n=0

∂j

∂xj
an(x)si ∂k

∂sk
Tn(s) (31)

Therefore the coefficients of the residual function of (20) can be written as:

rp = 〈Tp(s),mijkLijkϕN (x, s)〉 =
N∑

n=0

mijk
∂j

∂xj
an(x)

〈
Tp(s), si ∂k

∂sk
Tn(s)

〉

p = 0, 1, . . . , N (32)

where the last pair of parentheses is a 4-dimensional tensor denoted as

Bpikn =
〈

Tp(s), si ∂k

∂sk
Tn(s)

〉
(33)

The values of Bpikn can be determined analytically.

3.4. Boundary conditions

3.4.1. Free surface boundary conditions

For the free surface, Φs of the present time is already given. Thus, the Dirichlet type
boundary condition can be written as:

N∑
n=0

an(x)Tn(s)|s=1 =
N∑

n=0

an(x) = Φs(x) (34)

3.4.2. Bottom boundary condition

Applying chain rules on (29), we obtain

∇xϕN = ∇xanTn + an
dTn

ds

∇xh− − s∇xh+

h+
(35)

Substituting (35) into (9) and evaluating at s = −1, we obtain

2ann2(−1)n−1 (∇xh)2 + 1
h+

+ (−1)n∇xan · ∇h = 0 (36)

3.4.3. Incident lateral boundary

The incident waves are formulated through Stream Function Wave theory [Dean,
1965]. Therefore, both the velocity uI and velocity potential ΦI of the incident wave
are represented in the following form:

M∑
i=1

Xi(x, t) cosh ik(z + h) =
M∑
i=1

Xi(x, t) cosh
ik(s + 1)h+

2
(37)
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Chebyshev series expansion of (37) arouses the following integration:∫ 1

−1

cosh[ik(s + 1)h+/2]√
1 − s2

Tn(s)ds =

{
πIn(ikh+/2) cosh[ikh+/2] , n = 0, 2, 4, . . .

πIn(ikh+/2) sinh[ikh+/2] , n = 1, 3, 5, . . .

(38)

where In is the nth order modified Bessel function of the first kind.

3.4.4. Far-field conditions

For an impermeable, reflective vertical wall, the far-field condition is simple as:

∇xΦ = 0 (39)

Applying Galerkin approach to (35), we obtain

∇xap +
N∑

n=0

an

(∇xh−

h+
Bp01n − ∇xh+

h+
Bp11n

)
= 0 , p = 0, 1, . . . , N (40)

The open boundary condition for the spectral approach described in this study has
been treated with great care. Although there are many scheme (e.g. [Larsen and
Dancy, 1983]) to make an open boundary, most of them are designed for equa-
tions using the original variables u, η. For the approach using the velocity potential,
those scheme cannot make satisfactory results. Ohyama [1991] proposed a numerical
wave absorber for a Mixed Euler-Lagrangian (MEL) method which uses the veloc-
ity potential as a variable. Figure 2 shows a schematic diagram of the numerical
wave-absorption filter. An artificial “sponge layer” with gradually increasing damp-
ing coefficient is attached to the computational domain, where µ is the damping
coefficient in the “sponge layer” and xsp0, xsp1 are the location of the beginning and
end of the “sponge layer”. Due to the inefficiency of the “sponge layer” to absorb
long wave, behind the “sponge layer”, a radiation boundary condition is set in order
to allow long waves propagating out of the “sponge layer”. Following Ohyama’s idea,
we obtain the free surface boundary condition over the sponge layer:



ηt + ∇xη · ∇xΦs − (1 + ∇xη · ∇xη)Φz(x, η, t) = 0

Φs
t + gη +

1
2
∇xΦs · ∇xΦs − 1

2
(1 + ∇xη · ∇xη)Φ2

z(x, η, t)

+ µΦs −
∫ xsp1

xsp0

Φs∇xµ · dx = −P

ρ

(41)

Behind the “sponge layer”, the wave is assumed as long wave. The radiative
boundary condition is written as

∇xa0 =
η
√

gh

h
, x = xsp1 (42)

where
√

gh is the wave celerity of long wave.
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Fig. 2. Schematic diagram of the numerical wave-absorption filter.

3.5. Summary of governing equations

For the convenience of description, the equations for the 1DH case is summarized
here. The whole time-dependent problem after the Galerkin spectral approach is
written as follows:

Evolution equations for the free water surface


ηt + ∇xη · ∇xΦs − (1 + ∇xη · ∇xη)Φz(x, η, t) = 0

Φs
t + gη +

1
2
∇xΦs · ∇xΦs − 1

2
(1 + ∇xη · ∇xη)Φ2

z(x, η, t) = −P

ρ
, x < xsp0

Φs
t + gη +

1
2
∇xΦs · ∇xΦs − 1

2
(1 + ∇xη · ∇xη)Φ2

z(x, η, t)

+ µΦs −
∫ xsp1

xsp0

Φs∇xµ · dx = −P

ρ
, x > xsp0

(43)

Continuity equation in the computational domain

N∑
n=0

mijk
∂j

∂xj
an(x)Bpikn = 0 , p = 0, 1, . . . , N − 2 (44)

Dirichlet boundary condition for free surface

N∑
n=0

an(x) = Φs(x) (45)

Impermeable boundary condition for the bottom

2ann2(−1)n−1 (∇xh)2 + 1
h+

+ (−1)n∇xan · ∇h = 0 (46)

Lateral boundary condition for incident waves
Dirichlet

an = 〈Tn, ϕi〉 , n = 0, 1, . . . , N (47)
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Neumann boundary condition

∇xap +
N∑

n=0

an

(∇xh−

h+
Bp01n − ∇xh+

h+
Bp11n

)
= 〈Tp,ui〉 , p = 0, 1, . . . , N (48)

Far field condition
Impermeable vertical wall

∇xap +
N∑

n=0

an

(∇xh
−

h+
Bp01n − ∇xh

+

h+
Bp11n

)
= 0 , x0 = +∞ p = 0, 1, . . . , N

(49)

Open boundary

∇xa0 =
η
√

gh

h
(50)

Up to now, the main part of the theoretical derivation is completed. The following
section will discuss the numerical implementation of this model.

4. Numerical Implementation

Through Galerkin approach, the vertical coordinate in the governing equations has
been eliminated. All the differential operators are applied to the horizontal coordi-
nates. It is then possible to obtain a solvable system with spectral or presudo-spectral
methods on the two horizontal coordinates. However, the benefits of applying spec-
tral methods to the horizontal coordinates is not so significant as to the vertical
coordinate. The 10th order Chebyshev polynomials on the vertical coordinate will
satisfy most of the requirements, while the 1,000th order may be necessary for the
horizontal coordinates. Surely a full spectral solver will greatly enhance the accu-
racy of the results and efficiently save the numbers of unknowns, yet the full spectral
approach always induces full matrices, which cost much memory to store and com-
putational time to factorize. Therefore, it is difficult to evaluate the loss and gain.

Although with shortage of accuracy and efficiency, the finite difference scheme
has several merits. It is easy to program, flexible to carry out local procedures
(e.g. to multiply damping coefficient on a certain term) and generates band diagonal
matrices. The 1-dimensional solver is also convenient to extend to 2-dimensional
problem, which is a really tedious work for the full spectral solver.

After weighing those factors mentioned above, in an attempt of this study, we
adopt a semi-spectral solver, which utilizes the finite difference scheme along the
horizontal 1 dimension cases. A schematic diagram for solving (43) to (50) is shown
in Fig. 3.
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Evaluation of Bijkn

��
Φs, η, t

Solving

(44)∼ (50)
��
Φ, t

��
Φs, η, t + ∆t

Renewing Data

��

Φz

∣∣
z=η

, t

Temporal Integration

(43)

��

Fig. 3. Schematic diagram for sloving (43) to (50).

4.1. Evaluation of Bijkn

As shown in Fig. 3, the tensor Bijkn is evaluated before the main loop of temporal
integration. All the evaluations are based on three fundamental values:

Bi00n = 〈Ti, Tn〉 =

{
0 , i 	= n

1 , i = n
(51)

Bi01n = 〈Ti, dTn/ds〉 =
2
ci

{
n , i ∈ {n − 1, n − 3, n − 5, . . .}
0 , otherwise

(52)

Bi02n = 〈Ti, d
2Tn/ds2〉 =

1
ci

{
n(n2 − i2) , i ∈ {n − 2, n − 4, n − 6, . . .}
0 , otherwise

(53)

Thus, dTn/ds and d2Tn/ds2 can be expressed as

dTn

ds
=

n−1∑
i=0

Bi01nTi (54)

d2Tn

ds2
=

n−2∑
i=0

Bi02nTi (55)

From the recursive definition of Chebyshev Polynomials (10), we obtain

sTk(s) =




Tk−1 + Tk+1

2
, k ≥ 1

T1 k = 0
(56)
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and

s2Tk(s) =




Tk−2 + 2Tk + Tk+2

4
, k ≥ 2

3T1 + T3

4
, k = 1

T0 + T2

2
, k = 0

(57)

Substituting (56) and (57) into (54) and (55), and applying (51)–(53) we can evaluate
all the other Bijkn’s.

Take Bi11n as an example:

s
dTn

ds
=

n−1∑
r=0

Br01n




Tr−1 + Tr+1

2
, r ≥ 1

T1 , r = 0
(58)

Therefore

Bi11n =
〈

Ti, s
dTn

ds

〉

=

/
/∖
\
Ti,

n−1∑
r=0

Br01n




Tr−1 + Tr+1

2
, r ≥ 1

T1 , r = 0

∖\/
/

=
n−1∑
r=0

Br01n




〈Ti, Tr−1〉 + 〈Ti, Tr+1〉
2

, r ≥ 1

〈Ti, T1〉 , r = 0

=
n−1∑
r=0

Br01n




Bi00(r−1) + Bi00(r+1)

2
, r ≥ 1

Bi001 , r = 0

(59)

By the similar virtue, all the Bijkn are able to be evaluated.

4.2. Spatial discretization

By knowing the value of Bijkn, spatial discretization can be carried out. The un-
knowns are the coefficients of the Chebyshev polynomials, an(x). A non-staggered
mesh is adopted.

Equation (44) can be written as

∂2an

∂x2
+

N∑
m=0

C(x)nm
∂am

∂x
+

N∑
m=0

D(x)nmam = 0 , n = 1, 2, . . . , N − 2 (60)

where C(x) and D(x) are coefficient matrices.
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For the first term in (44), the 2nd order central difference scheme is applied:(
∂2an

∂x2

)i

=
ai+1

n − 2ai
n + ai−1

n

∆x2
, O(∆x2) (61)

For the second term in (44), the difference scheme changes with the m subscript.
If m = n, we adopt the second order upwind difference scheme:

(
∂am

∂x

)i

=




1
2∆x

(3ai
m − 4ai−1

m + ai−2
m ) , O(∆x2) , Cnm < 0

1
2∆x

(−3ai
m + 4ai+1

m − ai+2
m ) , O(∆x2) , Cnm > 0

(62)

If m 	= n, the second order central difference scheme is applied:(
∂am

∂x

)i

=
1

2∆x
(ai+1

m − ai−1
m ) , O(∆x2) (63)

4.3. Incident boundary conditions

In the first few periods, a moderation coefficient α(t) is multiplied to the incident
conditions.

α = 1 − exp
(
−β

t

T

)
(64)

where β is usually set to 1. Thus a tentative incident boundary condition is adopted:

Φst
I = α(t)ΦI (65)

ust
I = α(t)uI (66)

ηst
I = α(t)ηI (67)

4.3.1. Dirichlet boundary condition

For the Dirichlet boundary condition, another factor has to be considered. From
(7) and (1) we can find that those equations still hold after adding a constant C

on Φ. That means there may be a spatial constant difference between ΦI and Φcal

due to different datums (The datum for the velocity potential from stream function
theory is a moving point x − ct = 0, while the datum for the velocity potential in
the computational domain is a fixed point located at x = +∞). Fortunately the 0th
order Chebyshev polynomials T0 is a constant value 1, meaning that the vertical
derivative Φz will not be influenced by the coefficent before T0. Therefore we use
the value (T1,Φi), (T2,Φi), . . . , only leaving the T0 for a derivative-type relation in
order to eliminate the inconsistency due to the difference between datums.

−1.5a0
0 − 2a1

0 − 0.5a2
0 = 〈T0,u(x0)I〉

−1/6a0
0 + a1

0 − 0.5a2
0 − 1/3a3

0 = 〈T0,u(x1)I〉
(68)
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a0
n = 〈Tn,Φ(x0)I〉 , n = 1, 2, . . . , N

a1
n = 〈Tn,Φ(x1)I〉 , n = 1, 2, . . . , N

(69)

4.3.2. Neumann boundary condition

The Neumann boundary condition is simple as follows:

−1.5a0
p − 2a1

p − 0.5a2
p +

N∑
n=0

a0
n

(∇xh−

h+
Bp01n − ∇xh

+

h+
Bp11n

)
= 〈Tp,uI〉 ,

p = 0, 1, . . . , N

−1/6a0
p + a1

p − 0.5a2
p − 1/3a3

p

N∑
n=0

a0
n

(∇xh−

h+
Bp01n − ∇xh

+

h+
Bp11n

)
= 〈Tp,uI〉 ,

p = 0, 1, . . . , N

(70)

Impermeable reflective boundary condition

From (49), we simply obtain

1.5aN−1
p − 2aN−2

p +0.5aN−3
p +

N∑
n=0

aN−1
n

(∇xh
−

h+
Bp01n − ∇xh+

h+
Bp11n

)
= 0 ,

p = 0, 1, . . . , N
(71)

Open boundary condition

1.5aN−1
0 − 2aN−2

0 + 0.5aN−3
0 =

η
√

gh

h
(72)

4.4. Analysis of the linear algebra system

The linear algebra system generated from the above discretization approach is a
blocked sparse matrix. The distribution of the non-zero element is shown in Fig. 4.
We can find that the matrix consists of several (N + 1) × (N + 1) block. Exactly
speaking, it is a band diagonal matrix with band width 2× (N + 1). The LAPACK
routines for solving band diagonal linear algebra system is adopted. Denoting the
number of total points is Np, the routine for LU factorization in LAPACK named
DGBTRF, carries out approximately 2Np(2N + 1)(2N + 2) ∼ 2Np(2N + 1)(4N +
3) times of floating-point operations, depending on the interchanges. Routine for
forward and backward substitution to solve the equation named DGBTRS procedes
2Np(6N + 3) times floating-point operations. Therefore, the temporal compexity
for the spatial solving approach can be estimated as O(NpN

2). Compared with full
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Fig. 4. Distribution of the non-zero element of the LAS for 1DH.

matrix which arouses a temporal compexity of O(N3
p ), the present scheme saves the

computational time significantly at least for 1DH cases.
It is necessary to point out that although a compact band matrix can be obtained

for the 1DH case, the matrix elements must be scattered for the 2DH, which may
reduce computational efficiency. The Alternative-Direction-Implicit(ADI) scheme is
expected to be applied to the 2DH cases in order to enhance the computational
efficiency.

4.5. Temporal integration and calculation of vertical derivatives

The temporal integration of (43) is carried out through the 4th order Runge-Kutta
method without too much difficulty.

While a key value in (43) is Φz, which is also easy to be calculated as follows.

ds

dz
=

2
h+

(73)

Applying the chain rule, we obtain

Φz =
2

h+

N∑
n=0

an
dTn(s)

ds

=
2

h+

N∑
n=1

ann2 (74)
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5. Model Verification

In order to verify the model, we use the model to simulate three phenomena: the
propagation of finite amplitude waves over an even bottom with different relative
water depth and wave number; nonlinear wave shoaling; harmonic generation for
waves propagating over a submerged breakwater. The first two cases have theoret-
ical solutions which can be used as the criteria and in the third case the result
of simulation will be compared with laboratory data, and with the results from
Boussinesq-type models. The 12th order Chebyshev polynomial is adopted in all
the simulations.

5.1. Waves on horizontal bottom

For the waves on a horizontal bottom, two cases of incident waves have been selected.
The first case is the test of short wave and the second case is the test of nonlinear
wave in the intermediate water depth. The characteristic parameters of the incident
waves are listed in Table 1.

Table 1. Characteristic parameters of the
incident waves.

T (s) h(m) H(m) ∆t(s)

case 1 0.6 1.0 0.001 0.01

case 2 5.0 1.0 0.3 0.1

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6
x 10
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x/L

η 
(m

)

Simulated
10th SFM

Fig. 5. Spatial distribution for calculated surface elevation, kh = 11.
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Fig. 6. Spatial distribution for calculated surface elevation, H/h = 0.3.

Table 2. Computational conditions for different cases of shoaling study.

Case H0/L0 h1[m] h2[m] KS1 H1/2[m] Slope Length[m] Slope

1 0.001 1.0 0.5 1.6 0.08 50 0.01

2 0.005 6.0 1.37 1.0071 0.2518 463 0.01

Figures 5 and 6 demonstrate the spatial distribution of the water surface eleva-
tion for cases 1 and 2, comparing with the analytical results from the 10th order
Stream Function wave theory. In both figures, the difference between the numerical
simulation and the theory cannot be easily recognized. Here it is pointed out that
for the short wave in case 1, the results from most of the Boussinesq type equations
will have significant phase shift referring to the theoretical solution.

5.2. Nonlinear wave shoaling

In order to examine the ability of this model to predict wave shoaling over slowly
varying depth, two incident waves and their corresponding shoaling conditions are
listed in Table 2, where h1 is the offshore depth, h2 the onshore depth, H1 the
offshore wave height calculated from the deepwater wave height H0, using the linear
wave theory shoaling coefficient Ks. Figure 7 shows a sketch for the computational
domain used in this study.

The shoaling coefficents are calculated, and compared with the results of Sti-
assnie and Peregrine [1980] and Shuto [1974] in Figs. 8 and 9. It is clear from these
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Fig. 7. Spatial distribution for calculated surface elevation, wave height, and bottom depth.
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Fig. 8. Shoaling coefficient obtained by the present model, Stiassnie and Peregrine [1980] and Shuto
[1974].
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[1974].
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Fig. 10. Bathymetry of Luth’s experiment.

figures that the model developed through Chebyshev Spectral approach has a good
capability to simulate water wave shoaling over slowly varying topography.

5.3. Harmonic generation for waves propagating over a submerged

breakwater

Wave transformation over submerged bars in shallow water is an intriguing problem,
which involves the phenomena of wave-wave interaction and harmonic generation.
Here we simulate the experiment by Luth [1994]. The experiments were equivalent
to the set up of Beji and Battjes [1993] except for a factor 2 scaling. In the reduced
scale the bathymetry is defined as shown in Fig. 10, a horizontal flume with a depth
of 40 cm, a trapezoidal bar with an upward slope of 1/20, a downward slope of 1/10,
and a depth of 10 cm on top of the bar. Active absorption was applied at both ends
of the flume. Their test case A is used for the verification in the following. Case A

is based on regular incident waves with a wave period of 2.02 s and a wave height
of 2.0 cm.

Figures 11 to 13 show the the simulated time series of surface elevations at three
locations, together with the simulation by Madsen [1999] for the same condition
using Nwogu [1993] and Wei and Kirby [1995]’s equation. From Figs. 11 to 13, the
agreement between the simulation and measurement is fair. The slight overshoot-
ing of the wave height for the first order harmonic wave is related to the lack of
dissipation of the model, while either Wei [1995]’s or Nwogu [1993]’s model fails to
simulate the harmonic generation at the location where x = 19 m and x = 21 m.
The main reason for the success of the model in this study is believed to be due to its
fully-nonlinear characteristics and high accuracy to describe shoaling and dispersion.

6. Numerical Study of Nonlinear Wave/Current Interaction

After the model verification via different computational conditions, the reliability
and accuracy of the model have been confirmed. The direct application of the model
is the numerical study of nonlinear wave-current interaction. This study focuses in
particular on the numerical simulation for wave blocking phenomenon.
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Fig. 11. Harmonic generation over a submerged bar, x = 14.5 m.
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Fig. 12. Harmonic generation over a submerged bar, x = 19 m.

6.1. Simulation for wave blocking phenomenon

Here it is necessary to eluciate the condition of the wave blocking phenomenion
again: when propagating waves encounter an opposing current of increasing magni-
tude, wave blocking phenomenon occurs at a place where the current speed matches
the group velocity of the wave. In the blocking region, the wave becomes shorter
and steeper, and eventually breaks as it is reflected and travels back.

In the small amplitude wave theory, an explanation from the perpsective of
energy is that: when a wave train encounters a current in which the surface velocity
varies, the excess momentum flux results in an interchange of energy between waves
and current. When the convection velocity of energy is equal and opposite to the
local group velocity of the waves, the energy can no longer be propagated against
the stream and accumulated before the breaking point. The accumulation of the
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Fig. 13. Harmonic generation over a submerged bar, x = 21 m.

energy leads to infinite wave amplitude which is unrealistic and appears in the form
of wave breaking (e.g. [Longuet-Higgins and Stewart, 1961]; [Phillips, 1977]).

Analytical and semi-analytical studies of the nonlinear wave blocking phe-
nomenon point out that the breaking of wave before the blocking point is in the
form of reflection and backward travel of waves with high wave number (e.g. [Smith,
1975]; [Shyu and Phillips, 1990]; [Shyu and Tung, 1999]). However, theoretical treat-
ment for wave blocking by Peregrine and Thomas [1979] does not include the effect
of wave reflection and fails in the blocking region where the assumption of slowly
varying waves breaks down.

Numerical approaches for the wave blocking phenomenon have been carried out
by Chen [1996] through a set of modified Boussinesq equations. A current-wave
seperation skill was applied to Nwogu [1993]’s Boussinesq equation with length scale
parameters. However, this approach requires a very strong bottom friction in order
to stablize simulation. The strong dissipation introduced by the bottom friction
remove all the key structures near the blocking point.

6.2. Computational conditions

In this study, similar computational conditions as in Chen [1996] are adopted. The
spatial variation of current is generated by spatial change of topography. This case
considers a wave train propagating against a current in a channel with a subermged
bar. A sketch of the bathymetry is shown in Fig. 14.

The channel is 60 m long, 0.8 m deep on both sides of the bar and 0.2 m deep on
top of the bar. The bar is located from 8.0 m to 55.0 m. The slopes of the bar are
1/50 on the incoming side and 1/20 on the transmission side. The two corners of the
bar near x = 40 m are rounded for the convenience to obtain the initial boundary
conditions.
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Fig. 14. Bathymetry of the channel.
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Fig. 15. Initial spatial distribution of water elevation, and velocity potential.

The depth uniform steady current has a discharge of −0.136 m2/s (from right
to left). As shown in Fig. 15, the steady solution of the spatial distribution of the
current and its corresponding velocity potential on the free surface are obtained
through a program using boundary element methods. On the bar crest the current
velocity is −0.8090 m/s, the setdown of surface elevation is −0.0319 m. According
to linear theory only waves with a period larger than 3.35 s can be expected to pass
the bar without being blocked by the current.

A sinusoidal wave train propagation from left to right on top of the steady current
has been imposed. The incoming wave has a period of 2.0 s and an initial height
of 0.002 m. According to linear theory this wave are expected to be blocked where
the Froudes number Fc = U/

√
gd is −0.475, where d is the local water depth. This

location is found at x = 36.78 m, where the water depth of the initial steady current
from the free surface is 0.203 m.

6.3. Results of simulation

The computed surface elevations are shown in Figs. 16–22 for different instants
during the simulation.
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Fig. 16. Spatial distribution of surface elevation with and without setdown from current, t = 35 s.
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Fig. 17. Spatial distribution of surface elevation with and without setdown from current, t = 38 s.

In Fig. 16, the incoming wave train has just reached the area with strong currents
and there is yet no sign of blocking. In Fig. 17, the wave amplitude increases rapidly,
implying that the wave energy begins to accumulate. In Fig. 18, the reflected wave
has been generated and can be observed in a narrow zone.

From Figs. 19 to 22, the wave amplitude increases to 10 times of that of the inci-
dent wave, while the reflected waves are kept in traveling backward. For the reflected
waves, the effects of the opposing “original wave” together with the accumulated
wave energy will make them shorter and steeper. In reality, those short wave will
be rapidly dissipated by surface tension and viscosity ([Trulsen and Mei, 1993]). In
the simulation, the steep and short reflected waves demand very fine spatial and
temporal resolution, if no dissipation is applied. No dissipation is imposed in the
present computation.
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Fig. 18. Spatial distribution of surface elevation with and without setdown from current, t = 42.5 s.

0 5 10 15 20 25 30 35 40
−0.04

−0.02

0

0.02

η 
(m

)

Distance (m)  (a)

0 5 10 15 20 25 30 35 40
−0.01

−0.005

0

0.005

0.01

η 
−

 η
0 (

m
)

Distance (m)  (b)

Fig. 19. Spatial distribution of surface elevation with and without setdown from current, t = 50 s.

The results of simulation shown here indicate that the model not only accurately
predicts the location of the blocking point, but also gives a lucid description of the
wave structure in the blocking zone (the zone near the blocking point). It is believed
that the stability of the model for simulating the wave blocking phenomenon can be
improved by introducing a certain wave breaking model.

7. Conclusion

In this study, a new set of equations based on the spatial-temporal separation con-
ception is established through the Galerkin Chebyshev spectral approach on the
vertical direction. The 1DH version of this set of equation has been implemented
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Fig. 20. Spatial distribution of surface elevation with and without setdown from current, t = 50 s.
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Fig. 21. Spatial distribution of surface elevation with and without setdown from current, t = 55 s.

and verified with theoretical and experimental data. The model is proved to be of
high accuracy with moderate cost of computational resources and time.

The model can describe most of the wave and current motions of the potential
flow, before the wave overturn and/or breaking. All the nonlinear characteristics
have been retained in this model. The dispersion relation of the model is also verified
by the simulation of harmonic generation of waves propagating over a submerged
bar.

With this model, the wave blocking phenomenon in wave-current interaction has
been studied. The results of simulation indicate that the location of blocking point
determined by the linear wave theory is accurate for nonlinear phenomenon, while
the nonlinear wave structure in the blocking zone is also observed. Besides the above
success, several issues emerged during the development of the model.
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Fig. 22. Spatial distribution of surface elevation with and without setdown from current, t = 65 s.

(1) An incident wave boundary condition which is able to deal with the reflected
wave is neccesary in order to simulate the flow pattern around coastal structures.

(2) 2DH version of the numerical model is expected in order to be applied to real
problems.

(3) A breaking wave model is needed for further simulation.
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