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Introduction 

Quantum dynamics is always fraught with decoherence. 

 

 

System: S Environment: E 

The interactions with the environment that cause untraceable and uncon- 

trollable loss of quantum information. 



Introduction 

Decoherence              Quantum Error Correction Code  

 

 

 

 

 

 

As a result, the size of the system available for quantum computation 

(QC) is effectively much smaller than the system S.  

 

Question: Is this discussion (QC < S) always true? 

System: S Environment: E 

QC 
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Introduction 

Question: Can we make QC > S ? 

                 Can we use a part of E as QC? 

 

 

 

 

 

 

Answer:  Impossible!  for Markovian case.       

     Markovian: the quantum information never returns from E. 

 Then, how about non-Markovian case?  

System: S Environment: E 

QC QC 
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Introduction 

Question: Can we make QC > S ? 

                 Can we use a part of E as QC? 

 

 

 

 

 

 

Answer:  Possible for Non-Markovian (or general) case.       

  In general, because of unitary evolution of the joint system SE:  

   the quantum information  may return from E. 

System: S Environment: E 

QC QC 
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Introduction 

Idea: The joint system S+E is described by  

State on SE: |Ψ𝑆𝐸⟩   and   Interaction Hamiltonian: 𝐻𝑆𝐸    

 

 

 

 

If we can identify |Ψ𝑆𝐸⟩ and 𝐻𝑆𝐸, a part of E can be used for 

QC, by an indirect control.  

 

Let’s assume |Ψ𝑆𝐸⟩ and 𝐻𝑆𝐸  are known. 

Let’s see how to control a part of E through 𝐻𝑆𝐸. 

System: S Environment: E 

QC QC 
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2. Quantum Control Theory 

For detail of the quantum control theory, see D. D’Alessandro 

“Introduction to Quantum Control and Dynamics” , Taylor and 

Francis, Boca Raton, (2008) 
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Quantum control theory (open loop)  

Classical control systems: 

𝑑

𝑑𝑡
𝜓 𝑡 ⟩ = 𝑖𝐻 𝑓 𝑡 𝜓 𝑡 ⟩ 

 

|𝜓 𝑡 ⟩: a (pure) state on a Hilbert space ℋ. 

 𝐻 𝑢 𝑡 : a time dependent Hamiltonian 

𝑓 𝑡 : control parameters, e.g. external fields 

 

Question:  

 Which |𝜓 𝑡 ⟩ and/or unitary are reachable?  (controllability) 

 How quick  they are reachable? (optimality) 
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Quantum control theory (open loop)  

Operator controllability : 

𝑑

𝑑𝑡
𝑉 𝑡 = 𝑖𝐻 𝑓 𝑡 𝑉 𝑡     − (∗) 

 

Def.: the system is controllable,  

if ∀𝑉 ∈ 𝑈 𝑑 , ∃𝑓 𝑡 , 𝑡0,  s.t. 𝑉 = 𝑉(𝑡0) and 𝑉(𝑡)is a 

solution of (*) with 𝑉 0 = 𝐼. 

 

In other words, the system is controllable if all unitary is 

reachable by properly choosing parameters 𝑓 𝑡 . 
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Quantum control theory 

Operator controllability : 

𝑑

𝑑𝑡
𝑉 𝑡 = 𝑖𝐻 𝑓 𝑡 𝑉 𝑡     − (∗) 

 

Theorem: the system is controllable, if and only if  

Dynamical Lie group 𝑒𝐿is equal to 𝑈 𝑑 , where 𝑑 = dim ℋ. 

 

Dynamical Lie algebra: 𝐿: = 𝐿 𝑖𝐻 𝑓 : ∀𝑓  

Dynamical Lie group: 𝑒𝐿 := Lie group corresponding to L.  

 

We can operate all unitary operations in 𝑒𝐿 by modulating 𝑓 𝑡 . 
1
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Quantum control theory 

 

 

 

Our control system:  

𝐻 𝑡 = 𝐻𝑆𝐸 +  𝑓𝑚 𝑡 𝐻𝑆
𝑚

⊗ 𝐼𝑆
𝑀
𝑚=1 ,       

𝑓𝑚 𝑡  : control amplipudes 

𝐻𝑆
𝑚

𝑚
: a basis of algebra 𝑢(𝑑𝑆).  

u dS = 𝐿 𝑖𝐻𝑆
(𝑚)

⊗ 𝐼𝐸: 𝑚 ⊂ 𝐿 𝑖𝐻𝑆𝐸 , 𝑖𝐻𝑆
(𝑚)

⊗ 𝐼𝐸: 𝑚 . 

Available unitary operations are more than 𝑈(𝑑𝑆). 

Question: How large 𝐿 𝑖𝐻𝑆𝐸 , 𝑖𝐻𝑆
(𝑚)

⊗ 𝐼𝐸: 𝑚  is? 1
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Quantum control theory 

Question: How large 𝐿 𝑖𝐻𝑆𝐸 , 𝑖𝐻𝑆
(𝑚)

⊗ 𝐼𝐸: 𝑚  is? 

Answer: of course depends on 𝐻𝑆𝐸. But… 

 

<Quantum universal interface> (S. Lloyd et al PRA 2003) 

When S is a qubit, and  

𝐻𝑆𝐸 = 𝜎𝑧 ⊗ 𝐴 + 𝐼𝑆 ⊗ 𝐻 with generic 𝐴 and 𝐻, 

the whole system is controllable: 

 𝐿 𝑖𝐻𝑆𝐸 , 𝑖𝐻𝑆
(𝑚)

⊗ 𝐼𝐸: 𝑚 = 𝑢 𝑑𝑆𝑑𝐸 . −(∗∗)  

 

 (**) also holds in many other cases.  

∴ E can be used as QC, when |Ψ𝑆𝐸⟩ and 𝐻𝑆𝐸  are known.   1
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Quantum control theory 

 𝐿 𝑖𝐻𝑆𝐸 , 𝑖𝐻𝑆
(𝑚)

⊗ 𝐼𝐸: 𝑚 = 𝑢 𝑑𝑆𝑑𝐸  

also holds in many cases including spin chains:  

 S. Schirmer, Pullen, Pemberton-Ross PRA 2008  

 Burgarth, Giovannetti  PRA 2009 

etc…. 

 

∴ E can be used as QC, when |Ψ𝑆𝐸⟩ and 𝐻𝑆𝐸  are known.  

Question: Can we know |Ψ𝑆𝐸⟩ and 𝐻𝑆𝐸?  

 = Can we perform tomography of an environment? 

                                   …...there are known partial results… 



3. Tomography of environment 



Tomography of environment 
Question: Can we know |Ψ𝑆𝐸⟩ and 𝐻𝑆𝐸?  

 = Can we perform tomography of an environment? 

                                   …...there are known partial results… 

In many body systems described by Spin Chains etc, 

Hamiltonian can be identified under the condition of limited access. 

D. Burgarth, K. Maruyama, F. Nori, Phys. Rev. A 79, 020305(R) (2009) 

 

 

D. Burgarth, K. Maruyama, New J. Phys. 11 (2009) 103019  

 

 

However, they assume a prior knowledge of 𝐻𝑆𝐸.  

S E 



Tomography of environment 
Question: Suppose we do not know anything about the environment . 

Can we tomography |Ψ𝑆𝐸⟩ and 𝐻𝑆𝐸  by controlling the system S? 

 

 

 

 

Answer: In Daniel and Maruyama’s problem settings, No!   

We can easily find an example from their models. 

 

We need to increase our capability.  

S E 



Tomography of environment 
Our problem settings 

1. dim ℋ𝑆 < +∞ and  dim ℋ𝐸 < +∞ 

2. An arbitrarily large ancilla (the system A) is available. 

3.  We can instantaneously implement any quant. operations on AS. 

4. The joint system can be prepared in  |Ψ𝐴𝑆𝐸⟩ at an initial time 𝑡0.   

S E A 



Tomography of environment 
Our problem settings 

1. dim ℋ𝑆 < +∞ and  dim ℋ𝐸 < +∞ 

2. An arbitrarily large ancilla (the system A) is available. 

3.  We can instantaneously implement any quant. operations on AS. 

4. The joint system can be prepared in  |Ψ𝐴𝑆𝐸⟩ at an initial time 𝑡0 

Necessary: “Quantum information always return from E.” .  

 

S effectively interacts with only a finite dimensional subspace E of the 

universe E′ 

S E A 



Tomography of environment 
Our problem settings 

1. dim ℋ𝑆 < +∞ and  dim ℋ𝐸 < +∞ 

2. An arbitrarily large ancilla (the system A) is available. 

3.  We can instantaneously implement any quant. operations on AS. 

4. The joint system can be prepared in  |Ψ𝐴𝑆𝐸⟩ at an initial time 𝑡0. 

Assume:  A does not directly couple to E, and universal comp. on A. 

 

NTT has very expensive QC A, and want to sell SE.  

S E A 



Tomography of environment 
Our problem settings 

1. dim ℋ𝑆 < +∞ and  dim ℋ𝐸 < +∞ 

2. An arbitrarily large ancilla (the system A) is available. 

3.  We can instantaneously implement any quant. operations on AS. 

4. The joint system can be prepared in  |Ψ𝐴𝑆𝐸⟩ at an initial time 𝑡0. 

Assume: |Ψ𝐴𝑆𝐸⟩  is an unknown but identical state.  

 

Note: we can assume ASE is in pure at initial time: ASE can be purify 

by adding E2. Then, redefine EE2  as a new E.   

S E A 



Tomography of environment 
Our problem settings 

1. dim ℋ𝑆 < +∞ and  dim ℋ𝐸 < +∞ 

2. An arbitrarily large ancilla (the system A) is available. 

3.  We can instantaneously implement any quant. operations on AS. 

4. The joint system can be prepared in  |Ψ𝐴𝑆𝐸⟩ at an initial time 𝑡0. 

 

In practice, the joint system ASE weakly couples with universe E’.  

Interaction between SE is so dominant within the time scale 𝑇𝑆𝐸.  

However, for 𝑡 ≫ 𝑇𝑆𝐸,  a state on ASE is subjected to equibration.  

 

S E A 
E’ 



Tomography of environment 
Our problem settings 

1. dim ℋ𝑆 < +∞ and  dim ℋ𝐸 < +∞ 

2. An arbitrarily large ancilla (the system A) is available. 

3.  We can instantaneously implement any quant. operations on AS. 

4. The joint system can be prepared in  |Ψ𝐴𝑆𝐸⟩ at an initial time 𝑡0.   

 

 

 

Our results:  

We can “partially” identify completely unknown |Ψ𝐴𝑆𝐸⟩ and 𝐻𝑆𝐸  

so that E can be used for QC.   

Actually, “partially”  means “upto an equivalence class”. 

  

S E A 



Equivalence of environments 
Idea:  

To use E as QC, we do not necessarily specify |Ψ𝐴𝑆𝐸⟩ and 𝐻𝑆𝐸.  

 

dE, Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸) is enough to specify the environments. 

 

However, even if dE ≠ 𝑑′
𝐸 , Ψ𝐴𝑆𝐸 ≠ Ψ′

𝐴𝑆𝐸 , and 𝐻𝑆𝐸 ≠ 𝐻𝑆𝐸
′ ,  

dE, Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸) and d′E, Ψ′𝐴𝑆𝐸 , 𝐻′𝑆𝐸) may be equivalent as 

enviroments.  

 

 

 

S E A 



Equivalence of environments 
We do not distinguish between E from E’ as long as the experimenter 

cannot distinguish them.  



Equivalence of environments 
dE, Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸) ≡ d′E, Ψ′𝐴𝑆𝐸 , 𝐻′𝑆𝐸) 

                          if there is no protocol on AS to distinguish them. 

Protocol:  Repeat the following 2 steps 

1. Apply a non-deterministic quantum operation Γ𝑖  on 𝑡𝑖  

2. Freely evolute the system by 𝐻𝑆𝐸  from 𝑡𝑖  to 𝑡𝑖−1. 

Finally, measure A and S.  

 

 

Def 

ℋ𝐴 

ℋ𝑆 

ℋ𝐸  

𝑡1 𝑡2 𝑡3 

Γ1 Γ2 Γ3 
|Ψ𝐴𝑆𝐸⟩ 

𝐻𝑆𝐸  𝐻𝑆𝐸  

𝑀𝑖 



Equivalence of environments 
dE, Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸) ≡ d′E, Ψ′𝐴𝑆𝐸 , 𝐻′𝑆𝐸) 

                          if there is no protocol on AS to distinguish them. 

 

In this case, the results of any QC do not depend on whether the 

environment is dE, Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸) or d′E, Ψ′𝐴𝑆𝐸 , 𝐻′𝑆𝐸) 

Def 

ℋ𝐴 

ℋ𝑆 

ℋ𝐸  

𝑡1 𝑡2 𝑡3 

Γ1 Γ2 Γ3 
|Ψ𝐴𝑆𝐸⟩ 

𝐻𝑆𝐸  𝐻𝑆𝐸  

𝑀𝑖 



Tomography of environment 
Our problem settings 

1. dim ℋ𝑆 < +∞ and  dim ℋ𝐸 < +∞ 

2. An arbitrarily large ancilla (the system A) is available. 

3. The joint system can be prepared in  |Ψ𝐴𝑆𝐸⟩ at an initial time 𝑡0.   

 

 

 

 

Our results:  

We construct a protocol on AS to completely identify the equivalent class 

of dE, Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸) , so that a part of E can be used for QC without A.    

S E A 



4. Protocol for tomography of env. 



Protocol for Tomography of env. 

The protocol consists of two stages:  

1. Establishment of Entanglement between A and SE. 

 

2. Tomography of the state on AS.   

S E A 



Protocol for Tomography of env. 

1. Establishment of Entanglement between A and SE. 

1.                                        “State-steering protocol” 

A                                                          (a) Prepare a max. ent on ancilla, say |Υ𝐴1𝐴2
⟩.  

                                                                      

                                                             (b) Swap S and A1  

 

                                                             (c) State tomography of 𝜌𝐴,  

                                                                   and local filtering ℱ𝐿𝐹
𝐴  

                                                                    ℱ𝐿𝐹
𝐴 ≔ 𝜆min ⋅ 𝜌𝐴

−1 

 

                                                               We repeat (a), (b), (c) + time evolution for Δ𝑡𝑘. 

                                                               Then, ent. between A and SE will saturate.  



Protocol for Tomography of env. 
Subroutine 

(a) Prepare a max. ent on ancilla, say |Υ𝐴1𝐴2
⟩.                               

 

(b) Swap S and A1  

     Entanglement gain Δ𝐸(𝜌𝐴𝑆): 

 Δ𝐸 𝜌𝐴𝑆 ≔ 𝑆 𝜌𝐴𝑆 − 𝑆 𝜌𝐴 + log 𝑑𝑆 

 

(c) State tomography of 𝜌𝐴,                                                                    and local 

filtering ℱ𝐿𝐹
𝐴 ; 

    ℱ𝐿𝐹
𝐴 ≔ 𝜆min ⋅ 𝜌𝐴

−1 

After filtering 𝜌𝐴 is a projector on its support.   

(Schmidt coefficients of |Ψ𝐴𝑆𝐸⟩ is “flat”.) 



Protocol for Tomography of env. 
We stop the protocol when  ent. between A and SE saturates. 

 

  Δ𝐸 𝜌𝐴𝑆 = 0 

  

            Since Δ𝐸 𝜌𝐴𝑆 ≔ 𝑆 𝜌𝐸 − 𝑆 𝜌𝑆𝐸 + log𝑑𝑆 

                                      = 𝐷 𝜌𝑆𝐸  𝜌𝑆 ⊗ 𝜌𝐸 + 𝐷 𝜌𝑆 𝜌𝑚𝑖𝑥 , 

 

𝜌𝐴𝑆= Υ𝑆𝐴1
  Υ𝑆𝐴1

⊗ 𝜌𝐴2
 satisfying  

  ℋ𝐴 = ℋ𝐴1
⊗ ℋ𝐴2

  

 |Υ𝑆𝐴1
  is MES,  

 𝜌𝐴2
is a projector 



Protocol for Tomography of env. 
𝜌𝐴𝑆= Υ𝑆𝐴1

  Υ𝑆𝐴1
⊗ 𝜌𝐴2

  

with  ℋ𝐴 = ℋ𝐴1
⊗ ℋ𝐴2

 , |Υ𝑆𝐴1
  is MES, 𝜌𝐴2

is a projector. 

 

That is, Ψ𝐴𝑆𝐸 = Υ𝐴1𝑆
⊗ |Φ𝐴2𝐸⟩. 

 |Φ𝐴2𝐸⟩ may not be a MES.  

 

However, 

Possible to prove that ∃ d′E, Ψ′𝐴𝑆𝐸 , 𝐻′𝑆𝐸) 

s.t. dE, Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸) ≡ d′E, Ψ′𝐴𝑆𝐸 , 𝐻′𝑆𝐸) 

and Ψ𝐴𝑆𝐸 = Υ𝐴1𝑆
⊗ |Υ𝐴2𝐸⟩ with |Υ𝐴2𝐸  is MES. 

 

 



Protocol for Tomography of env. 

2. Tomography of the state on AS 

After the saturation,  

Ψ𝐴𝑆𝐸 = Υ𝐴1𝑆
⊗ |Υ𝐴2𝐸⟩ ,  Υ  is MES.  

upto equivalence of environments.  

 

 

Since IA ⊗ U Υ𝐴1𝑆
⊗ Υ𝐴2𝐸 = 𝑈𝑇 ⊗ 𝐼𝑆𝐸 Υ𝐴1𝑆

⊗ |Υ𝐴2𝐸⟩, 

the evolution of AS: 

𝑖
𝑑

𝑑𝑡
𝜌𝐴𝑆 = 𝐻𝑆𝐸

𝑇 ⊗ 𝐼𝑆 , 𝜌𝐴𝑆 .   

--(*) 

Possible to prove all 𝐻𝑆𝐸  satisfies (*) is equivalent.  

We only have to find 𝐻𝑆𝐸satisfying (*) from tomography of 𝜌𝐴𝑆(𝑡). 



Protocol for Tomography of env. 
Finding a Hermitian 𝐻𝑆𝐸  satisfying 

𝑖
𝑑

𝑑𝑡
𝜌𝐴𝑆 𝑡 = 𝐻𝑆𝐸

𝑇 ⊗ 𝐼𝑆, 𝜌𝐴𝑆 𝑡     − (∗) 

 

∃ 𝜃𝛼 𝛼=1
𝐿  and 𝜌𝛼 𝛼=0

𝐿  s.t.  

𝜌𝐴𝑆 𝑡 = 𝜌0 +  𝑒𝑖𝜃𝛼(𝑡−𝑡0)𝜌𝛼 + 𝑒−𝑖𝜃𝛼(𝑡−𝑡0)𝜌𝛼
†𝐿

𝛼=1 . 

 

We can determine 𝜃𝛼 𝛼=1
𝐿  and 𝜌𝛼 𝛼=0

𝐿  from an experimentally 

observed 𝜌𝐴𝑆 𝑡  , e.g. from at most the 𝑑𝐴
2-th derivative at 𝑡0.   



Protocol for Tomography of env. 

Finding a Hermitian 𝐻 𝑆𝐸  satisfying 

𝑖
𝑑

𝑑𝑡
𝜌𝐴𝑆 𝑡 = 𝐻 𝑆𝐸

𝑇 ⊗ 𝐼𝑆, 𝜌𝐴𝑆 𝑡     − (∗) 

 

 For given 𝜃𝛼 𝛼=1
𝐿  and 𝜌𝛼 𝛼=0

𝐿  , Eq. (*) holds   

if and only if 𝐻𝑆𝐸  satisfies 

 
𝐻𝑆𝐸 , 𝜌0 = 0                                              

𝐻𝑆𝐸 , 𝜌𝛼 = −𝜃𝛼𝜌𝛼, 1 ≤ 𝛼 ≤ 𝐿  .
− (∗∗) 

 

Eq.(**) reduces a system of linear equations. 

Solving the linear equations, we derive 𝐻𝑆𝐸. 

 Tomography complete! 



Protocol for Tomography of env. 

The protocol consists of two stages:  

1. State-steering protocol 

When the protocol halts,  

A is maximally entangled with SE.   

 

2. Tomography of the state on AS.   

Tomography 𝜌𝐴𝑆 𝑡   

and solve linear equations. 



Summary 
Our problem settings 

1. dim ℋ𝑆 < +∞ and  dim ℋ𝐸 < +∞ 

2. An arbitrarily large ancilla (the system A) is available. 

3. The joint system can be prepared in  |Ψ𝐴𝑆𝐸⟩ at an initial time 𝑡0.   

 

Our results:  

We construct a protocol on AS to completely identify the equivalent class 

of dE, Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸) , so that a part of E can be used for QC without A. 

 

    

System: S Environment: E 

QC QC 



Part 2.  

Mathematical Details 

 
• Notations 

• Equivalence of environments 

• The maximally entanglement (ME) condition 

• Tomography under the ME condition 

• Protocol to achieve the ME condition 

4
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Notations 
Projector onto |Ψ⟩: 𝑃 Ψ ≔ |Ψ⟩⟨Ψ| 

 

Hilbert space: ℋ𝐴𝑆𝐸 ≔ ℋ𝐴 ⊗ ℋ𝑆 ⊗ ℋ𝐸  

dA ≔ dim ℋ𝐴 , dS ≔ dim ℋ𝑆 , dE ≔ dim ℋ𝐸  

 

Interaction Hamiltonian: 𝐻𝑆𝐸 ∈ ℬ(ℋ𝑆𝐸) 

Initial time: 𝑡0 ,    Final time: 𝑡∞      (we allow 𝑡∞ = +∞) 

State on ASE at 𝑡0 : |Ψ𝐴𝑆𝐸⟩ 

after time evol. from 𝑡0 to 𝑡 : Ψ𝐴𝑆𝐸 𝑡 ≔ 𝑒−𝑖𝐻𝑆𝐸(𝑡−𝑡0)|Ψ𝐴𝑆𝐸⟩ 

 

Environment during 𝑡0, 𝑡∞  is characterized by a triple: 

𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸   4

1
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Equivalence of environment 

Def: 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸 ≡ 𝑑 𝐸 , Ψ 𝐴𝑆𝐸 , 𝐻 𝑆𝐸  in 𝑡0, 𝑡∞ ,  

if   

Tr𝐸 Π𝑖 Γ𝑖 ⊗ ℐ𝐸 ℐ𝐴 ⊗ 𝒰𝑆𝐸
(𝑖)

𝑃 |ΨASE⟩  

            =Tr𝐸 Π𝑖 Γ𝑖 ⊗ ℐ𝐸 ℐ𝐴 ⊗ 𝒰 𝑆𝐸
(𝑖)

𝑃 |Ψ ASE⟩  

∀𝑛 ∈ ℕ, ∀ 𝑡𝑖 𝑖=1
𝑛 with 𝑡0 < 𝑡𝑖 < 𝑡𝑖+1 < 𝑡∞, 

∀ ℋ𝐴𝑖 𝑖=1

𝑛
, ∀ Γ𝑖 𝑖=1

𝑛 , where Γ𝑖 is a CP and Trace non-

increasing maps from ℬ(ℋ𝐴𝑖
⊗ ℋ𝐴𝑖+1

)to ℬ(ℋ𝐴𝑖+1
⊗ ℋ𝑆), 

Where 𝒰𝑆𝐸
(𝑖)

𝜌 ≔ 𝑒−𝑖 𝑡𝑖−𝑡𝑖−1 𝐻𝑆𝐸𝜌 𝑒𝑖 𝑡𝑖−𝑡𝑖−1 𝐻𝑆𝐸  

 and 𝒰 𝑆𝐸
(𝑖)

𝜌 ≔ 𝑒−𝑖 𝑡𝑖−𝑡𝑖−1 𝐻 𝑆𝐸𝜌 𝑒𝑖 𝑡𝑖−𝑡𝑖−1 𝐻′𝑆𝐸 
4
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Maximal Entanglement condition 

Def: 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸  satisfies the maximal entanglement 

(ME) condition in [𝑡0, 𝑡∞), if ∀𝑡 ∈ [𝑡0, 𝑡∞), 

∃ℋ𝐴1
𝑡  and ℋ𝐴2

𝑡 ,  s.t. ℋ𝐴 = ℋ𝐴1
𝑡 ⊗ ℋ𝐴2

(𝑡), and  

Tr𝐸 𝑃 |Ψ𝐴𝑆𝐸⟩ = 𝑃 |Υ𝐴1𝑆 𝑡 ⟩ ⊗ 𝜌𝐴 𝑡 , 

where |Υ𝐴1𝑆 𝑡 ⟩ is MES, and 𝜌𝐴(𝑡) is proportional to a 

projector.  

The ME condition depends only on AS.  

                The ME condition is property of equiv. class of env. 

 

𝜌𝐴(𝑡) may no be a MES; rank 𝜌𝐸 < 𝑑𝐸. 

 
4
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The ME condition 

Theorem 1: Suppose 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸  satisfies the ME 

condition in 𝑡0, 𝑡∞ .  

Then, 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸 ≡ 𝑑 𝐸 , Ψ 𝐴𝑆𝐸 , 𝐻 𝑆𝐸  in 𝑡0, 𝑡∞ ,  

if ∀𝑡 ∈ [𝑡0, 𝑡∞),    

Tr𝐸 𝑃 |Ψ𝐴𝑆𝐸(𝑡)⟩ = Tr𝐸 𝑃 |Ψ 𝐴𝑆𝐸(𝑡)⟩ . 

 

When the system satisfies the ME condition, an equivalence of 

natural time evolutions (without active operations) of AS is 

enough to show the equivalence of environments.  

 

4
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The ME condition 

Corollary 1: Suppose 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸  satisfies the ME 

condition  in 𝑡0, 𝑡∞ .  

Then, 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸 ≡ 𝑑 𝐸 , Ψ 𝐴𝑆𝐸 , 𝐻 𝑆𝐸  in 𝑡0, 𝑡∞  

implies that, for all 𝑡 0  and 𝑡 ∞ with  𝑡 0 < 𝑡 ∞ , 

𝑑𝐸 , Ψ𝐴𝑆𝐸(𝑡) , 𝐻𝑆𝐸 ≡ 𝑑 𝐸 , Ψ 𝐴𝑆𝐸 𝑡 , 𝐻 𝑆𝐸  in [𝑡 0, 𝑡 ∞) 

 

 

If a system satisfies the ME condition, an equivalence of 

environments does not depend on an initial 𝑡0 and a final time 𝑡∞. 
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The ME condition 

Theorem 2: Suppose 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸  satisfies the ME 

condition in 𝑡0, 𝑡∞ .  

Then, ∃ 𝑑 𝐸 , Ψ 𝐴𝑆𝐸 , 𝐻 𝑆𝐸  s. t. 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸 ≡

𝑑 𝐸 , Ψ 𝐴𝑆𝐸 , 𝐻 𝑆𝐸  in 𝑡0, 𝑡∞ ,  

and Ψ 𝐴𝑆𝐸  is MES.  

Thus, Ψ 𝐴𝑆𝐸 = Υ𝐴1𝑆 ⊗ Υ𝐴2𝐸 ; 

Υ𝐴2𝐸 =
1

𝑟
 |𝑖𝑖⟩𝑟

𝑖=1  . 

 

4
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The ME condition 

Corollary 2: Suppose 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸  satisfies the ME 

condition  in 𝑡0, 𝑡∞ .  

Then, for all 𝑡 0  and 𝑡 ∞ with  𝑡 0 < 𝑡 ∞ , 𝑑𝐸 , Ψ𝐴𝑆𝐸(𝑡) , 𝐻𝑆𝐸   
satisfies the ME condition in [𝑡 0, 𝑡 ∞) 

 

The ME condition does not depend on an initial time 𝑡0 and a final 

time 𝑡∞. 

If the system satisfies the ME condition  for a short time, the 

system will always satisfy the ME condition after that. 

4
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Tomography under the ME condition 

Corollary 3: Suppose 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸  satisfies the ME 

condition  in 𝑡0, 𝑡∞  , and Ψ𝐴𝑆𝐸  can be written down as 

Ψ 𝐴𝑆𝐸 = Υ𝐴1𝑆 ⊗ Υ𝐴2𝐸  . 

Then,  if a Hermitian matrix 𝐻 𝑆𝐸  on ℋ𝑆 ⊗ ℋ𝐸  satisfies 

𝑖
𝑑

𝑑𝑡
𝜌𝐴𝑆 𝑡 = 𝐻 𝑆𝐸

𝑇 ⊗ 𝐼𝑆, 𝜌𝐴𝑆 𝑡     − (∗) 

For all 𝑡 in an  neighbourhood of 𝑡0,  

then, 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸 ≡ 𝑑𝐸 , Ψ𝐴𝑆𝐸 , 𝐻 𝑆𝐸  in 𝑡0, 𝑡∞  

 

For an experimentally observed 𝜌𝐴𝑆(𝑡),  

All 𝐻 𝑆𝐸  satisfying Eq.(*) can be used as a interaction Hamiltonian. 
4
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Tomography under the ME condition 

Finding a Hermitian 𝐻 𝑆𝐸  satisfying 

𝑖
𝑑

𝑑𝑡
𝜌𝐴𝑆 𝑡 = 𝐻 𝑆𝐸

𝑇 ⊗ 𝐼𝑆, 𝜌𝐴𝑆 𝑡     − (∗) 

 

∃ 𝜃𝛼 𝛼=1
𝐿  and 𝜌𝛼 𝛼=0

𝐿  s.t.  

𝜌𝐴𝑆 𝑡 = 𝜌0 +  𝑒𝑖𝜃𝛼(𝑡−𝑡0)𝜌𝛼 + 𝑒−𝑖𝜃𝛼(𝑡−𝑡0)𝜌𝛼
†𝐿

𝛼=1 . 

 

We can determine 𝜃𝛼 𝛼=1
𝐿  and 𝜌𝛼 𝛼=0

𝐿  from an experimentally 

observed 𝜌𝐴𝑆 𝑡  , e.g. from at most the 𝑑𝐴
2-th derivative at 𝑡0.   

4
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Tomography under the ME condition 

Finding a Hermitian 𝐻 𝑆𝐸  satisfying 

𝑖
𝑑

𝑑𝑡
𝜌𝐴𝑆 𝑡 = 𝐻 𝑆𝐸

𝑇 ⊗ 𝐼𝑆, 𝜌𝐴𝑆 𝑡     − (∗) 

 

We can prove: For given 𝜃𝛼 𝛼=1
𝐿  and 𝜌𝛼 𝛼=0

𝐿  , if 𝐻𝑆𝐸  satisfy 

 
𝐻𝑆𝐸 , 𝜌0 = 0

𝐻𝑆𝐸 , 𝜌𝛼 = −𝜃𝛼𝜌𝛼, 1 ≤ 𝛼 ≤ 𝐿  ,
− (∗∗) 

then,  Eq. (*) holds.  

 

Eq.(**) reduces a system of linear equations. 

Solving the linear equations, we derive 𝐻𝑆𝐸.  

5
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Protocol to achieve the ME condition 

Remarks  

 𝑑𝐴 = 1 at the beginning of the protocol.  

 At the beginning (t = 0), the joint system SE is in a pure state. 

 We always need to derive the present description of the state on 

AS. So, we need to apply a state-tomography in every small time 

period on AS.  Thus, we need to repeat each step of our protocol 

infinitely many times. 

 The time t is the elapsed-time. Thus, we restart the clock from t = 

0 when a non-deterministic operation is failed, or we apply the 

state-tomography. 
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Protocol to achieve the ME condition 

Subroutine 

(a) Prepare a max. ent on ancilla, say |Υ𝐴1𝐴2
⟩.                               

 

(b) Swap S and A1  

     Entanglement gain Δ𝐸(𝜌𝐴𝑆): 

 Δ𝐸 𝜌𝐴𝑆 ≔ 𝑆 𝜌𝐴𝑆 − 𝑆 𝜌𝐴 + log 𝑑𝑆 

 

(c) State tomography of 𝜌𝐴,                                                                    and local 

filtering ℱ𝐿𝐹
𝐴 ; 

    ℱ𝐿𝐹
𝐴 ≔ 𝜆min ⋅ 𝜌𝐴

−1 

 

5

2

/

3

5 



Protocol to achieve the ME condition 

Protocol with parameter 𝚫𝐭: 

Step 0: At the beginning, say t = 0, there is no ancillary system A, 

that is dimℋ𝐴  = 1, and we set counter 𝐶 =  0. 

Step 1: Increment the counter 𝐶 by one. Implement the 

subroutine. Define this time as 𝑡𝐶. 

Step 2: Define 𝜖𝐶  as 

𝜖𝐶 ≔
1

2
sup Δ𝐸 𝑡 |𝑡 ∈ 𝑡𝐶 , 𝑡𝐶 + Δ𝑡  

by means of the state tomography on AS during [𝑡𝐶 , 𝑡𝐶  +  Δ𝑡].  

Stop the protocol if 𝜖𝐶  =  0, otherwise let the system SE evolves 

for a time while Δ𝐸(𝑡)  <  𝜖𝐶, and go back to the step 1, when 

Δ𝐸(𝑡)  =  𝜖𝐶. 
5

3

/

3

5 



Protocol to achieve the ME condition 

Theorem 3. The protocol halts at latest when 𝐶 = 𝑑𝑆𝑑𝐸, or 

equivalently   𝑡 = 𝑑𝑆𝑑𝐸Δ𝑡. 

In other words, ∃K ≤ 𝑑𝐸  s.t. Δ𝐸 𝑡 = 0 for all t ∈ 𝑡𝐶 , 𝑡𝐶 + Δ𝑡 . 

 

∵) After the application of the last subroutine, 𝜌𝐴 is proportional to a 

projector.   

If ∃t ∈ 𝑡𝐶 , 𝑡𝐶 + Δ𝑡  s.t.  Δ𝐸 𝑡 > 0 , then rank 𝜌𝐴 increments by 

one by a swap operation. 

Thus, C ≤ rank 𝜌𝐴 = rank 𝜌𝑆𝐸 ≤ 𝑑𝑆𝑑𝐸 .  
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Protocol to achieve the ME condition 

Theorem 4. Suppose the counter 𝐶 = 𝐾 when the protocol halts. 

Then, for all 𝑡∞ satisfying 𝑡∞ > 𝑡𝐾, 𝑑𝐸 , Ψ𝐴𝑆𝐸 𝑡𝐾 , 𝐻𝑆𝐸) satisfies 

the ME condition. 

 |Ψ𝐴𝑆𝐸 𝑡𝐾 ⟩: a state just after 𝐾-th implementation of the subroutine 

 

∵) Δ𝐸 𝜌𝐴𝑆 ≔ 𝑆 𝜌𝐸 − 𝑆 𝜌𝑆𝐸 + log 𝑑𝑆 

                       = 𝐷 𝜌𝑆𝐸  𝜌𝑆 ⊗ 𝜌𝐸 + 𝐷 𝜌𝑆 𝜌𝑚𝑖𝑥 . 

Thus, Δ𝐸 𝜌𝐴𝑆 =0, iff  𝜌𝑆𝐸 = 𝜌𝑆 ⊗ 𝜌𝐸  and 𝜌𝑆 = 𝜌𝑚𝑖𝑥. 

This implies the ME condition.  

 

Therefore, we succeeded to achieve the ME condition. 

So, tomography of environments is possible.  
5
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Summary 
Our problem settings 

1. dim ℋ𝑆 < +∞ and  dim ℋ𝐸 < +∞ 

2. An arbitrarily large ancilla (the system A) is available. 

3. The joint system can be prepared in  |Ψ𝐴𝑆𝐸⟩ at an initial time 𝑡0.   

 

Our results:  

We construct a protocol on AS to completely identify the equivalent class 

of dE, Ψ𝐴𝑆𝐸 , 𝐻𝑆𝐸) , so that a part of E can be used for QC without A. 

 

    

System: S Environment: E 

QC QC 
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