Unitary designs - constructions and applications -

Yoshifumi Nakata

The University of Tokyo

@ 8th Quantum Theory & Technology Un-Official Meeting

Self-introduction

中田芳史

東京大学工学系 光量子科学研究センター: 特任研究員

□ 経歴:

- ▶ 2006-2008: 東京大学 修士課程(村尾研)
- ▶ 2008-2010: 青年海外協力隊 エチオピア
- ▶ 2008-2013: 東京大学 博士課程(村尾研)
- 2013 2015: Leibniz University Hannover (Germany)
- 2015 2017: Autonomous University of Barcelona (Spain)
- ▶ 2017- : 東京大学(特任研究員)
- ▶ 2018- : 京都大学基研(特定助教)

最近は「ユニタリ・デザイン」に 関連した研究

Outline

Intro. Random unitary in quantum information

- 1. Haar random unitary in QI
- 2. Unitary designs in QI

Part I. Constructing unitary designs

- 1. Unitary 2-designs
- 2. Unitary t-designs for general t

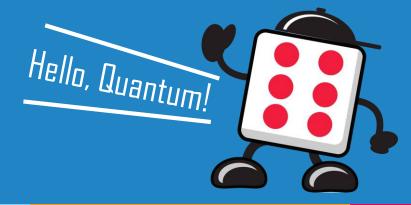
Part II. Applications of random unitary

1. Towards channel coding with symmetry-preserving unitary

Intro.

Random unitary in quantum information science

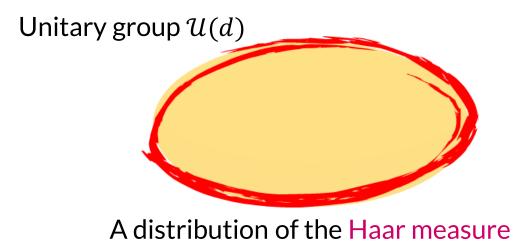
Randomness meets Quantum World!!



A Haar random unitary

<u>A Haar random untiary</u> is the unique unitarily invariant probability measure H on the unitary group U(d). Namely,

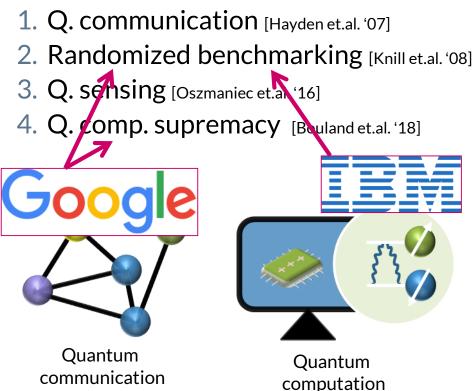
(A) $\mu_{H}(U(d)) = 1$, (B) for any $V \in U(d)$ and any (Borel) set $\omega \subseteq U(d)$, $H(V\omega) = H(\omega V) = H(\omega)$.



Applications of a Haar random unitary

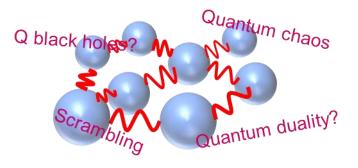
Haar random unitary is very useful in QIP and in fundamental physics.

In QIP



In fundamental physics

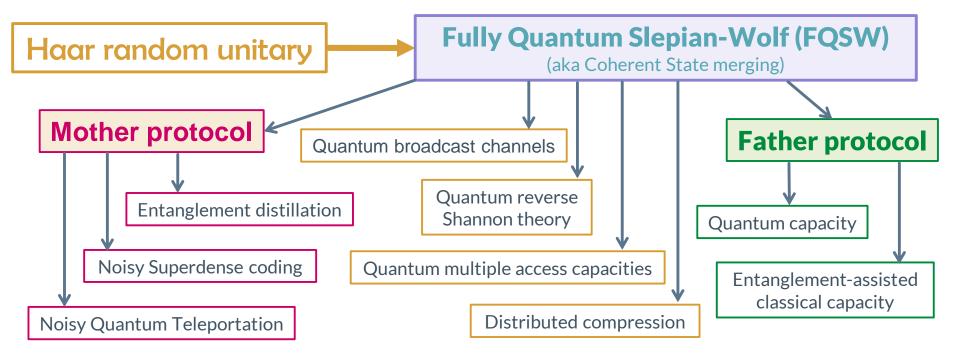
- 1. Disordered systems
- 2. Pre-thermalization [Reimann '16]
- 3. Q. black holes [Hayden&Preskill '07]
- 4. Q. chaos -OTOC- [Roberts&Yoshida '16]



Haar random in Q. communication

Quantum communication

Two people want to communicate in a quantum manner.



See Hayden's tutorial talk in QIP2011

Family tree of information protocols

Haar random in Q. communication

Quantum communication

- Two people want to communicate in a quantum manner.
- Haar random unitary is a random encoder!!
 - It is extremely inefficient (too random).

Fixed code

LDPC code, Stabilizer code, etc...

Less random code??

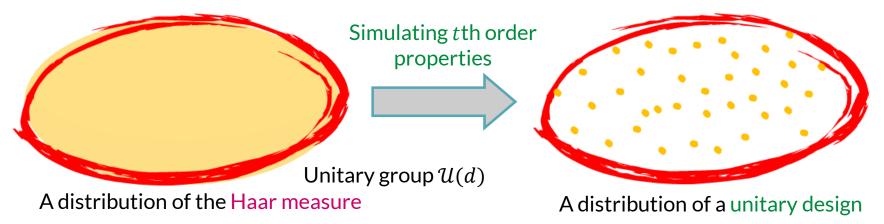
Google, IBM, and others already have "random" dynamics. N Why don't we try to use it?

Need to think about approximating Haar random!

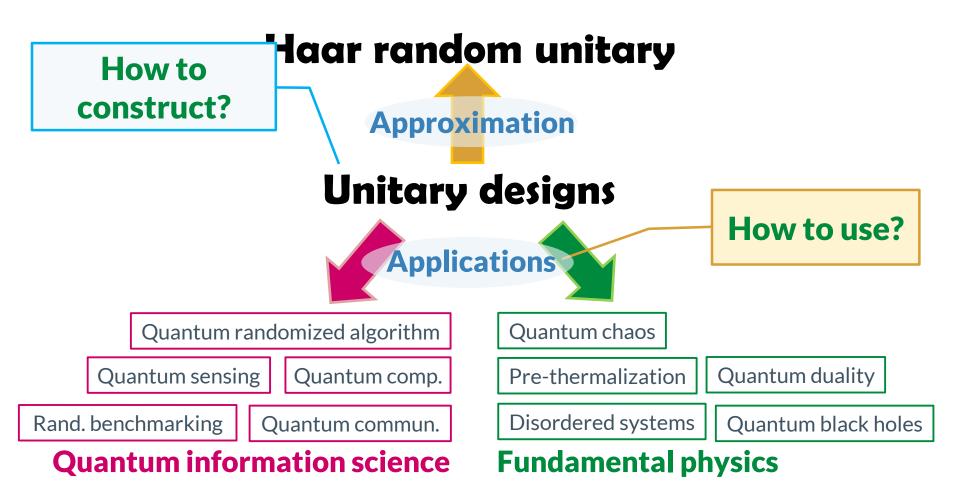
Unitary design

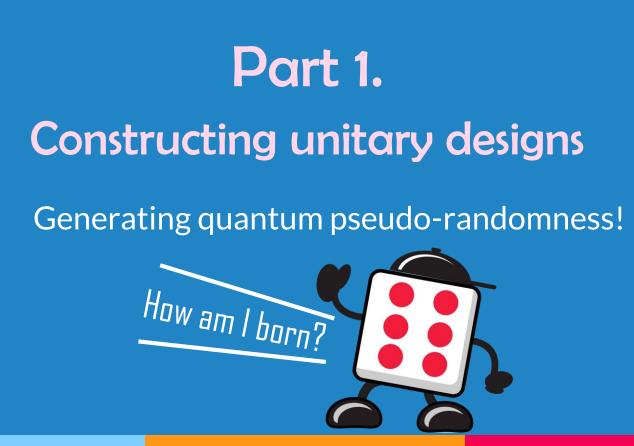
Unitary designs as approximating Haar

- Nice applications of NISQ (Noisy-Intermediate-Scale-Quantum device).
- Quantum pseudo-randomness in quantum computer
- Nice insights to fundamental physics (chaos, blackholes, etc...)
- Unitary t-design is a set of unitaries that simulate up to the t-th order properties of Haar random unitary.



Unitary design meets QIP and fundamental physics





In collaboration with Hirche, Koashi, and Winter. [1] YN, C. Hirche, C. Morgan, and A. Winter, JMP, 58, 052203 (2017). [2] YN, C. Hirche, M. Koashi, and A. Winter, PRX, 7, 021006 (2017).

Approximate unitary design

An ϵ -approximate unitary *t*-design is a probability measure that simulates up to the *t*th order statistical moments of the Haar measure within an error ϵ .

A more precise definition:

Unitary t-design minimizes the frame potential of degree *t*.

For a set of unitaries $\mathcal{U} = \{p_i, U_i\}_{i=1}^K$, define the *frame* potential of degree t, by $F_t(\mathcal{U}) = \sum_{i,j=1}^K p_i p_j |\operatorname{Tr}[U_i U_j^{\dagger}]|^{2t}$ Then, $\mathcal{U} = \{p_i, U_i\}_{i=1}^K$ is an ϵ -approximate unitary t-design if $F_t(\mathcal{U}) = F_t^{\operatorname{Haar}} + \epsilon.$

> Indeed, the average over Haar measure is the minimum, which is t! if $d \ge t$.

Approximate unitary design

An ϵ -approximate unitary *t*-design is a probability measure that simulates up to the *t*th order statistical moments of the Haar measure within an error ϵ .

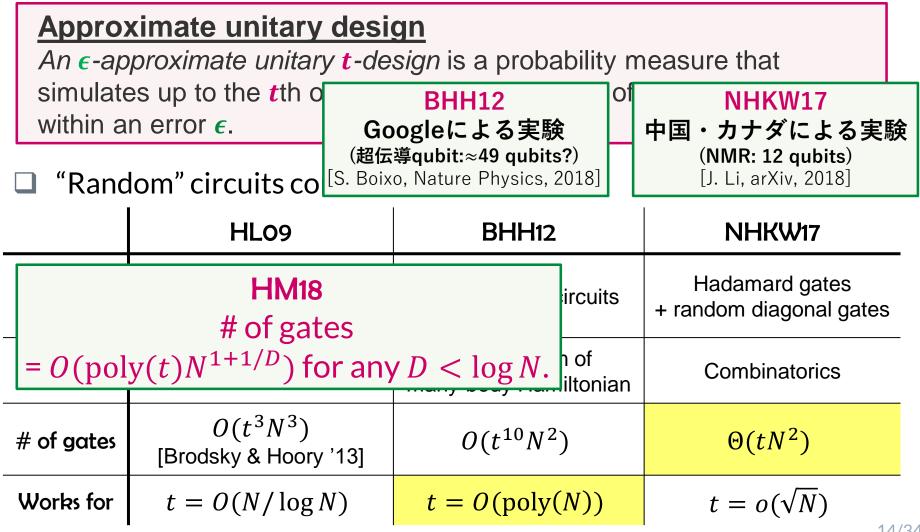
Two approaches

1. Use a subgroup of the unitary group \rightarrow Clifford group

✓ Beautiful analyses are possible!!	Se Quantum circuits??
✓Exact unitary designs!!	😂 Up to 2- (or 3-)designs.

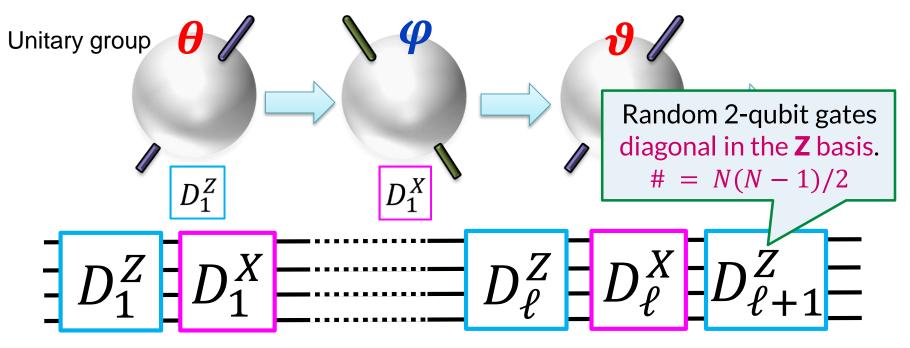
2. Use a "random" quantum circuits

Works for general t-design.	Stot exact designs.
\checkmark Quantum circuits are given.	Case-by-case analyses

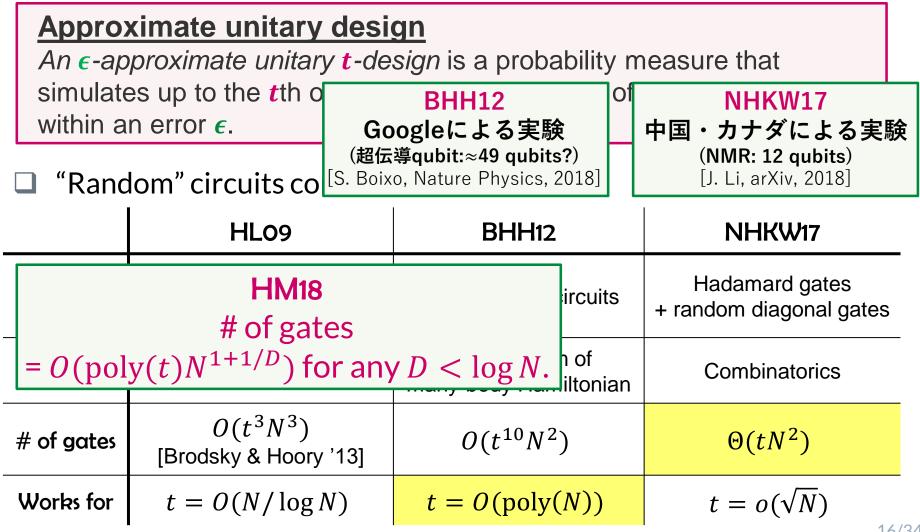


Constructing designs by NHKW17

☐ The idea is to use random diagonal unitaries in *X* and *Z* bases.

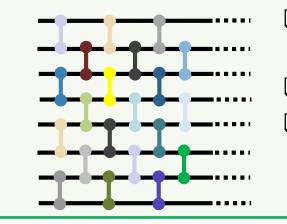


- Each D_i^W are independently chosen.
- If $\ell \ge t + \frac{1}{N}\log_2 1/\epsilon$, this forms an ϵ -approximate unitary t-design.
- $\approx t N^2$ gates are used in the construction

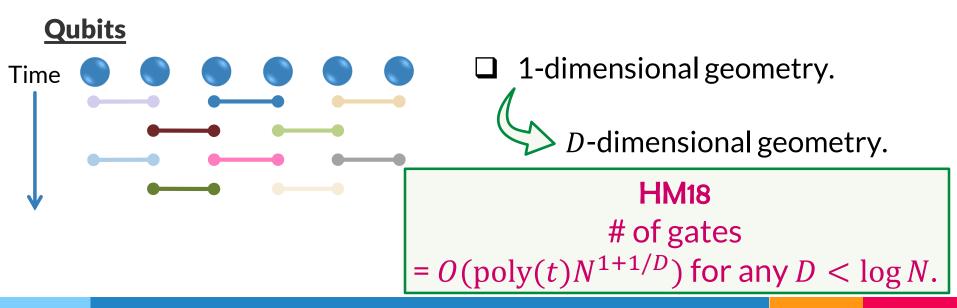


Constructing designs by HM18

Construction by BHH12

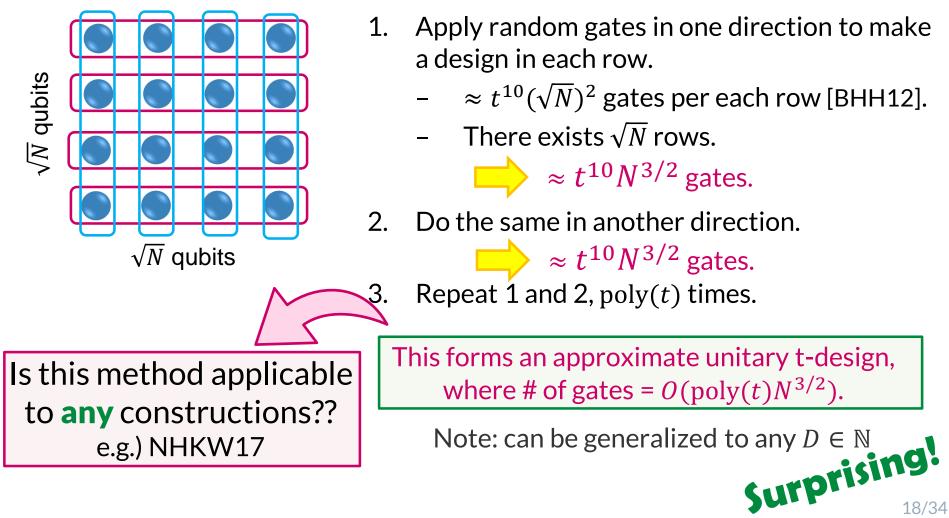


- The idea is to apply random 2-qubit gates on nearest-neighbor qubits.
- □ Mapped to a Hamiltonian gap problem.
 - After $\approx t^{10}N^2$ gates, it becomes an approximate unitary *t*-design.
 - The *t*-dependence may not be optimal.



Constructing designs by HM18

Qubits on 2-dim lattice



Optimality of the constructions

HM18

of gates = $O(\operatorname{poly}(t)N^{1+1/D})$ for any $D < \log N$.

Theorem

At least $\approx tN$ quantum gates are needed to generate a unitary design.

If
$$\mathcal{U} = \{U_i\}_{i=1}^K$$
 is a unitary t-design,

$$t! = \sum_{i,j=1}^K p_i p_j \left| \operatorname{Tr}[U_i U_j^{\dagger}] \right|^{2t} \ge \sum_{i=1}^K p_i^2 \left| \operatorname{Tr}[U_i U_i^{\dagger}] \right|^{2t} \ge 2^{2tN} / K. \qquad K \ge 2^{2tN} / t!.$$

If each gate is chosen from s different gates and the # of gates is $L, K = s^{L}$.

$$L \gtrsim 2tN - t\log t.$$

Is it possible to achieve this bound? If not, better bound?

Summary and open questions about constructing designs

	# of local unitaries	It works for
Harrow and Low, 2009	$O(t^3N^4)$	$t = O(N/\log N))$
Brandao, Horodecki, and Harrow, 2012	$O(t^{10}N^2)$	t = O(poly(N))
Nakata, Hirche, Koashi, and Winter, 2017	$O(tN^2)$	$t = o(N^{1/2})$
Harrow, and Mehraban, 2018	$O(\text{poly}(t)N^{1+1/D})$	$t = \operatorname{poly}(N)$

- Several constructions for approximate *t*-designs for general *t*.
 - Is the bound ($\approx tN$) achievable?
 - In design theory, a *t*-design has several "types".
- What about exact ones?
 - In some applications, we need exact ones, e.g. RB.
 - For 2-designs, use Clifford circuits [CLLW2015].
 - For general *t*, how to construct exact ones?

Exact ones for any t [Okuda, and YN, in prep], but $O(10^6)$ gates to make 4-designs on 2 qubits...

Not all "types" are

needed in QIP.

Part 2. Applications of unitary designs

Let's use Quantum pseudo-randomness!

In collaboration with Wakakuwa, and Koashi.
[1] E. Wakakuwa, and YN, in preparation.
[2] YN, E. Wakakuwa, and M. Koashi, in preparation.
[3] E. Wakakuwa, YN, and M. Koashi, in preparation.

Applications of a Haar random unitary

Haar random unitary is very useful in QIP and in fundamental physics.

In QIP

- 1. Q. communication [Hayden et.al. '07]
- 2. Randomized benchmarking [Knill et.al. '08]
- 3. Q. sensing [Oszmaniec et.al. '16]
- 4. Q. comp. supremacy [Bouland et.al. '18]

In fundamental physics

- 1. Disordered systems
- 2. Pre-thermalization [Reimann '16]
- 3. Q. black holes [Hayden&Preskill '07]

4. Q. chaos -OTOC- [Roberts&Yoshida '16]

Physical systems often have symmetries! QIP with symmetry restrictions?? Quant Communication with symmetry-preserving coding

Random unitary with a symmetry

- So far, Haar random unitaries on $\mathcal{H}_N^S = (\mathbb{C}^2)^{\otimes N}$.
- Physical systems often have a symmetry.
 - Rotational symmetry, U(1) symmetry, etc...
 - Tensor product representation of a group G.
 - Irreducible decomposition:

$$\mathcal{H}_{N}^{S} = \bigoplus_{j=1}^{J} (\mathcal{H}_{j}^{S_{r}}) \stackrel{\oplus}{\uparrow} \stackrel{m_{j}}{\uparrow} \stackrel{\longrightarrow}{\longrightarrow} \mathcal{H}_{N}^{S} = \bigoplus_{j=1}^{J} (\mathcal{H}_{j}^{S_{r}} \otimes \underbrace{\mathcal{H}_{j}}_{\mathcal{H}_{j}}^{S_{m}})$$

multiplicity
$$\underset{\dim(\mathcal{H}_{i}^{R}) = m_{i}}{\overset{(\mathcal{H}_{j}^{S_{r}}) \otimes \underbrace{\mathcal{H}_{j}}_{\mathcal{H}_{j}}^{S_{m}}} \stackrel{(\mathcal{H}_{j}^{S_{r}} \otimes \underbrace{\mathcal{H}_{j}}_{\mathcal{H}_{j}}^{S_{m}})}{\underset{Multiplicity}{\underset{Multip}{\underset{Multiplicity}{\underset{Multiplicity}{\underset{Multiplicity}{\underset$$

e.g.) Spin-spin coupling (spin-1/2 × 3): $\mathcal{H} \equiv 4 \oplus 2 \oplus 2$ 4-dimensional irrep. (dim $\mathcal{H}_1^{S_r} = 4$, dim $\mathcal{H}_1^{S_m} = 1$) 2-dim. irreps with multiplicity 2. (dim $\mathcal{H}_2^{S_r} = 2$, dim $\mathcal{H}_2^{S_m} = 2$)

Hilbert space

invariant

under any action of G.

Random unitary with a symmetry

- So far, Haar random unitaries on $\mathcal{H}_N^S = (\mathbb{C}^2)^{\otimes N}$.
- Physical systems often have a symmetry.
 - Rotational symmetry, U(1) symmetry, etc...
 - Tensor product representation of a group G.
 - Irreducible decomposition:

 $\mathcal{H}_{N}^{S} = \bigoplus_{j=1}^{J} (\mathcal{H}_{j}^{S_{r}})^{\bigoplus m_{j}} \Longrightarrow \mathcal{H}_{N}^{S} = \bigoplus_{j=1}^{J} (\mathcal{H}_{j}^{S_{r}} \otimes \mathcal{H}_{j}^{S_{m}})$

"Symmetry-preserving" random unitaries. – $U = \bigoplus_{j=1}^{J} (I_j^{S_r} \otimes U_j^{S_m})$, where $U_j^{S_m}$ is the Haar on $\mathcal{H}_j^{S_m}$.

e.g.) Spin-spin coupling (spin-1/2 × 3): $\mathcal{H} = 4 \oplus 2 \oplus 2 \ll 2$

Hilbert space

invariant

under any action of G.

Why symmetry-preserving R.U.?

Symmetry-preserving random unitary (a group G is given) $U = \bigoplus_{j=1}^{J} (I_j^{S_r} \otimes U_j^{S_m})$, where $U_j^{S_m}$ is the Haar on $\mathcal{H}_j^{S_m}$.

Decoupling-type theorem

One of the most important theorems in QIP [1] E. Wakakuwa, and YN, in preparation.

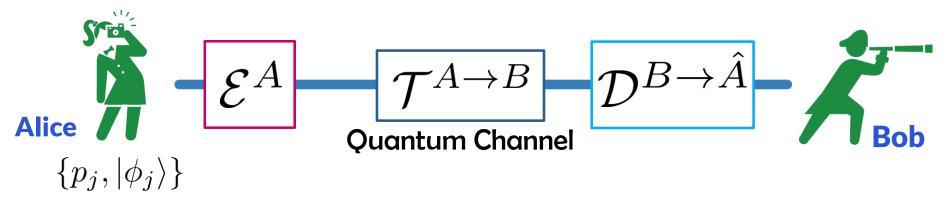
Quantum Communication

with symmetry restriction

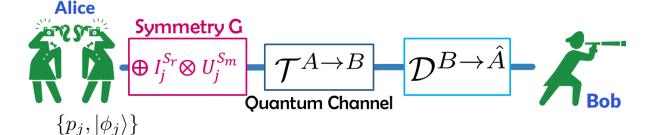
[2] YN, E. Wakakuwa, and M. Koashi, in prep.

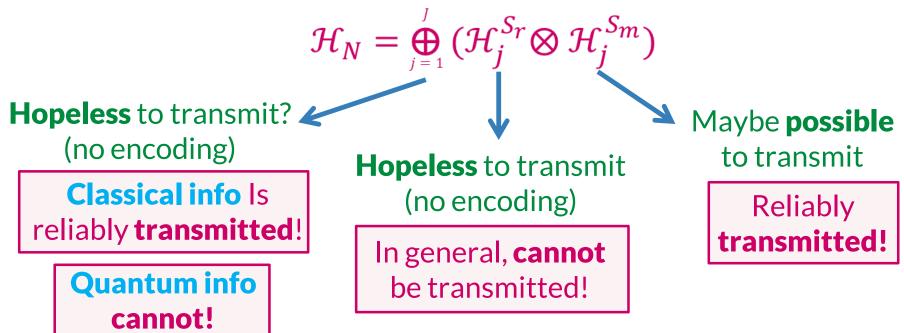
"Hybrid" communication quantum and classical

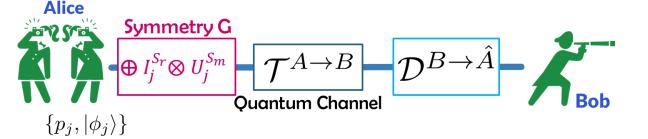
[3] E. Wakakuwa, YN, and M. Koashi, on going.

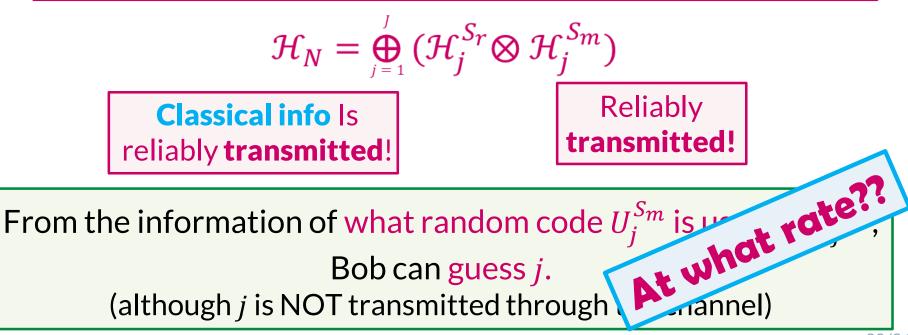


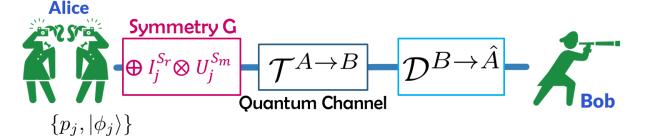
- Limited to symmetry-preserving unitary encoding!
 - > A group G is acting on the system A.
 - > The \mathcal{E}^A should be in the form of $U = \bigoplus (I_i^{S_r} \otimes U_i^{S_m})$.
- In general, full information cannot be reliably transmitted.











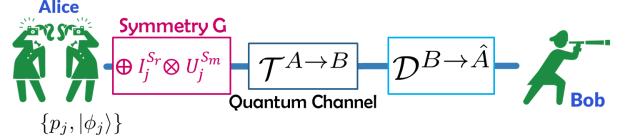
$$\mathcal{H}_{N} = \bigoplus_{j=1}^{J} (\mathcal{H}_{j}^{S_{r}} \otimes \mathcal{H}_{j}^{S_{m}})$$

$$\begin{array}{c} \text{Reliably} \\ \text{transmitted!} \end{array}$$

$$\begin{array}{c} \text{transmitted!} \end{array}$$

$$\begin{array}{c} \text{Reliably} \ \text{transmitted!} \end{array}$$

$$\begin{array}{c} \text$$



- Open problems:
- 1. Converse (not easy even in the i.i.d. limit)?
 - Asymptotic limit of the entropy?? $H_{\min}(S_m * S'_m | RE)_{\Gamma}$
- 2. What happens if we consider symmetry-preserving operations, not only unitary?
- 3. How to implement symmetry-preserving unitary??

Unitary design meets QIP and fundamental physics

