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Intro.
Random unitary in quantum information science

Randomness meets Quantum World!!
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A Haar random unitary

A Haar random untiary is the unique unitarily invariant
probability measure H on the unitary group U(d). Namely,

(A) pyU@) =1,
(B) foranyV € U(d) and any (Borel) setw € U(d), HVw) = H(wV) = H(w).

Unitary group U(d)




Applications of a Haar random unitary

Haar random unitary is very useful in QIP and in fundamental physics.

In QIP In fundamental physics
1. Q. communication [Hayden et.al.07] 1. Disordered systems
2. Randomized benchmarking knitetar.0s] 2. Pre-thermalization [reimann ‘1¢]
3. Q. sgMsing [0szmaniec et'a\'16] 3. Q. black holes [Haydenspreskill ©07]
4. Q. gomp. supremacy [Bhuland et.al. ‘18] 4. Q. chaos -0TOC- [Roberts&Yoshida ‘16]

Google

. ‘) Qb’adﬁho Qhﬁﬁgfm Chaog
= e o

Quant.um. Quantum
communication computation




Haar random in Q. communication

d Quantum communication
— Two people want to communicate in a quantum manner.

Haar random unitary |—>

Fully Quantum Slepian-Wolf (FQSW)

(aka Coherent State merging)

!

Mother protocol

Quantum broadcast channels

|

Entanglement distillation

Quantum reverse
Shannon theory

v

Noisy Superdense coding

Quantum multiple access capacities

Y
Noisy Quantum Teleportation

v

N

Father protocol

v

Quantum capacity

Distributed compression

A 4
Entanglement-assisted
classical capacity

See Hayden’s tutorial talk in QIP2011

Family tree of information protocols
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Haar random in Q. communication

] Quantum communication
— Two people want to communicate in a quantum manner.

1 Haar random unitary is arandom encoder!!
- Itis extremely inefficient (too random).

Fixed code
LDPC code, Stabilizer code, etc... Less random code??

Google, IBM, and others already
have “random” dynamics.
A Why don’t we try to use it?

% Need to think about

approximating Haar random!

Unitary design




Unitary designs as approximating Haar
Q0
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J Random coding by un[@@ly (EF&MS > F LA RDRE L IGH b'_\_'t
— Nice applications of NISQ (Noisy-Intermediate-Scale-Quantum device).
— Quantum pseudo-randomness in quantum computer
- Nice insights to fundamental physics (chaos, blackholes, etc...)

J Unitary t-design is a set of unitaries that simulate up to the t-th
order properties of Haar random unitary.

Simulating tth order
properties

e Unitary group U(d)
A distribution of the Haar measure A distribution of a unitary design




Unitary design meets
QIP and fundamental physics

Howto  Haar random unitary

? \
construct: Approximation
-

Unitary designs

How to use?
{Applicationr

Quantum randomized algorithm Quantum chaos
Quantum sensing | | Quantum comp. Pre-thermalization || Quantum duality
Rand. benchmarking Quantum commun. Disordered systems || Quantum black holes

Quantum informationscience = Fundamental physics
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Part 1.

Constructing unitary designs

Generating quantum pseudo-randomness!

In collaboration with Hirche, Koashi, and Winter.
[1]1 YN, C. Hirche, C. Morgan, and A. Winter, JMP, 58,052203(2017).

[2] YN, C. Hirche, M. Koashi, and A. Winter, PRX, 7,021006 (2017).
11




Short History of constructing designs

Approximate unitary design
An e-approximate unitary t-design is a probability measure that
simulates up to the tth order statistical moments of the Haar measure

Sl &0 GO & Unitary t-design minimizes
A more precise definition: the frame potential of degree t.

For a set of unitaries U = {p;, U;} 1 ,, define the frame potential of degree ¢, by
K

2t
FU) =) pip;|T2[U:U]]]
i,j=1
Then, U = {p;, U; }2 | is an e-approximate unitary ¢t-design if

Fy(U) = F'* +e.

> Indeed, the average over Haar measure is the minimum, which is

tlicd > t.




Short History of constructing designs

Approximate unitary design

An e-approximate unitary t-design is a probability measure that
simulates up to the tth order statistical moments of the Haar measure
within an error €.

1 Two approaches
1. Use asubgroup of the unitary group — Clifford group

v'Beautiful analyses are possible!! Quantum circuits??
v'Exact unitary designs!! Up to 2- (or 3-)designs.
2. Use a“random” quantum circuits

v'"Works for general t-design. #-Not exact designs.
v'Quantum circuits are given. #HCase-by-case analyses....




Short History of constructing designs

Approximate unitary design

An e-approximate unitary t-design is a probability measure that

simulates up to the tth o

BHH12

within an error €. Googlelz &k 3 =5
(BIEE qubit:~49 qubits?)

1 “Random’” circuits collS: Boixo, Nature Physics, 2018]

0] |

NHKW17

FE - hF XLk DEER
(NMR: 12 qubits)
[J. Li, arXiv, 2018]

HLO9 BHH12 NHKW17
HM18 Uit Hadamard gates
US4 random diagonal gates
_ # of gates
= 0(p01y(t)N1+1/D) forany D <logN. 1i|t(2)fnian Combinatorics
O(t3N3) 10 p72 2
# of gates [Brodsky & Hoory "13] O(EN7) ()
Works for t =0(N/logN) t = O(poly(N)) t = o(WN)




Constructing designs by NHKW17

1 Theideais touse random diagonal unitariesin X and Z bases.

Unitary group @ \ (P 19{
, E | :> Random 2-qubit gates

diagonal in the Z basis.

74 N _
D7 DX # = NN —1)/2

N

;

ZH X nZH nXHpZ
DY D1 Exmg Dy HDp FD 44

- Each D}V are independently chosen.

- Iff=>t+ %log2 1 /€, this forms an e-approximate unitary t-design.

- =~ tN? gates are used in the construction




Short History of constructing designs

Approximate unitary design
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simulates up to the tth o

BHH12
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Constructing designs by HM18

Construction by BHH12
- =— —p—-:. ] Theideaisto apply random 2-qubit gates on
- o nearest-neighbor qubits.
a8 — 0O Mapped to a Hamiltonian gap problem.
- - —_ O After = t'1°N? gates, it becomes an
— === = approximate unitary t-design.
- The t-dependence may not be optimal.
Qubits
Tme ® ® ® & & © d 1-dimensional geometry.
c——=0
—° D-dimensional geometry.
v e HM18

# of gates
= 0(poly(t)N1*1/P) for any D < logN.




Constructing designs by HM18

Qubits on 2-dim lattice

CICEOEO IS
)
5 (0 |® O @
O
= (@@ 8 ®
® 9 e 5
[ L .
VN qubits

Apply random gates in one direction to make
a design in each row.

- = t19(/N)? gates per each row [BHH12].
- There exists VN rows.
~ t10N3/2 gates.
Do the same in another direction.
~ t1O0N3/2 gates.
Repeat 1 and 2, poly(t) times.

=

Is this method applicable

This forms an approximate unitary t-design,
where # of gates = 0 (poly(t)N3/?).

to any constructions??
e.g.) NHKW17

Note: can be generalized to any D E. N.‘“g\.
sutP“s



Optimality of the constructions

HM18

# of gates = O (poly(t)N1*1/P) for any D < log N.

Theorem

At least =~ tN quantum gates are needed to generate a unitary design.

If U = {U;} X, is a unitary ¢-design,

K K
=" pop; | UU" 2 2| T[UiU] | > 22V /K.
i,j=1 i=1

K > 22N/,

If each gate is chosen from s different gates and the # of gates is L, K = s”.

L 2 2tN —tlogt.

Is it possible to achieve this bound? If not, better bound?




Summary and open questions
about constructing designs

# of local unitaries It works for
Harrow and Low, 2009 O(t°N*) t=0(N/logN))
Brandao, Horodecki, and Harrow, 2012 O(t'VN?) t =O(poly(N))
Nakata, Hirche, Koashi, and Winter, 2017 O(tN?) t =o(NY?)
Harrow, and Mehraban, 2018 O(poly(t) N +1/D) t = poly(N)

[ Several constructions for approximate t-designs for general t.
- Isthe bound (= tN) achievable? Not all “types” are
- Indesign theory, a t-design has several “types”. needed in QIP.

O What about exact ones?
- In some applications, we need exact ones, e.g. RB.
- For 2-designs, use Clifford circuits [CLLW2015].
- For general t, how to construct exact ones?

Exact ones for any t [Okuda, and YN, in prep],
but 0(10°) gates to make 4-designs on 2 qubits...




Part 2.
Applications of unitary designs

Let’s use Quantum pseudo-randomness!
/_\

MHV/hE/p

——

In collaboration with Wakakuwa, and Koashi.
[1] E. Wakakuwa, and YN, in preparation.

[2] YN, E. Wakakuwa, and M. Koashi, in preparation.
[3] E. Wakakuwa, YN, and M. Koashi, in preparation.




Applications of a Haar random unitary

Haar random unitary is very useful in QIP and in fundamental physics.

In QIP In fundamental physics
1. Q. communication [Hayden et.al.07] 1. Disordered systems
2. Randomized benchmarking knilieta.0s]] 2. Pre-thermalization [reimann ‘1¢]
3. Q. sensing [0szmaniec et.al. ‘16] 3. Q. black holes [Haydenspreskill 071

4. Q. comp. supremacy [Boulandet.al.‘?él-. Q. chaos -0TOC- [Roberts&Yoshida “16]

Physical systems often have symmetries! | N
° ° ° h
QIP with symmetry restrictions?? J ™ chacs
o (] L |
Quantum Communication g
° ° ° WA
Quant with symmetry-preserving coding o
communitzrerom computation




Random unitary with a symmetry

" Sofar, Haar random unitaries on #3 = (C?)®V,
" Physical systems often have a symmetry.

— Rotational symmetry, U(1) symmetry, etc... Hilbert ?pice
Invarian
— Tensor product representation of a group G. under any action of G.
— lrreducible decomposition: /
] S _ ] S
multiplicity multiplicity

dim(}[]R) =m;

e.g.) Spin-spin coupling (spin-1/2 x 3): H =4 ®&2® 2

4-dimensional irrep. /

(dim Hfr = 4,dim }[15’” =1)  2-dim. irreps with multiplicity 2.
(dim FH,7 = 2, dim H,™ = 2)




Random unitary with a symmetry

" Sofar, Haar random unitaries on H = (C?)®V.

" Physical systems often have a symmetry.
— Rotational symmetry, U(1) symmetry, etc... Hi!bert§ pice
— Tensor product representation of a group G. under ;nnV; :Cat?on of G.
— lrreducible decomposition: /

] ST' ) J
" “Symmetry-preserving” random unitaries.
]

- U=@ (I]-Sr® U]-Sm), where U™ is the Haar on 74,

e.g.) Spin-spin coupling (spin-1/2 X 3): H =4 &2 2
Sm Al A, |
O T




Why symmetry-preserving R.U.?

Symmetry-preserving random unitary (a group G is given)
J
U= (If"@ U].Sm), where U].Sm is the Haar on }[jSm.
j=1

Decoupling-type theorem

One of the most important theorems in QIP
[1] E. Wakakuwa, and YN, in preparation.

Quantum Communication

with symmetry restriction
[2] YN, E. Wakakuwa, and M. Koashi, in prep.

“Hybrid” communication

quantum and classical
[3] E. Wakakuwa, YN, and M. Koashi, on going.




Quantum Communication
with symmetry-preserving coding

iy
R e

Alice ,'
{pj, 1950}

Quantum Channel

9, —:
; ;Bob

O Limited to symmetry-preserving unitary encoding!

» Agroup G is acting on the system A.
> The £4 should be inthe formof U = @ (I]-S’”(X) U]-Sm).

O Ingeneral, full information cannot be reliably transmitted.

What information can be transmitted reliably at what rate?




Quantum Communication
with symmetry-preserving coding

Alice
<= Symmetry G
AN Y Y

Quantum Channel ob
{pj ) |¢J > }

What information can be transmitted reliably at what rate?

/ S, Sm,
%N:g(j{j ®Hj )

Hopeless to transmit? / \l, \ Maybe possible

(no en.cod{ng) Hopeless to transmit to transmit
I.Clslsslcal Inf?tltS N (no encoding) Reliably
reliably transmitted! .
Y In general, cannot transmitted!
Quantum info be transmitted!
cannot!




Quantum Communication
with symmetry-preserving coding

Alice
<= Symmetry G
5 y y

N 71

n > 4
LG Ifr® UjSm _| TA—>B )_DB%A_A]
B

Quantum Channel

{pj,|o5)}

ob

What information can be transmitted reliably at what rate?

/ S, Sm,
%N:g(j{j ®Hj )

Classical info Is
reliably transmitted!

Reliably

transmitted!

Bob can guessj.

(although j is NOT transmitted through




Quantum Communication
with symmetry-preserving coding

Alice
<= Symmetry G
AN Y Y

Quantum Channel ob
{pj,|0;)}

What information can be transmitted reliably at what rate?

/ S, Sm,
%N:g(j{j ®Hj )

Classical info Is reliably Reliably
transmitted! transmitted!

At what rate?? Hpin (S x S) |RE)r > 1

1 ySrSmR o =55, E 1 S, SmR o =S.SE
el B H ® Ty mamy ©1J ® Ty
Sm*S! RE ._ S, S/ : : S, S
[om*om = g (Q°r>r : ; Q)5S
1 SpSmR o =515, E 1 qSrSmR o =SLSIE
T U ® T e e o AR



Quantum Communication
with symmetry-preserving coding

Alice
<= Symmetry G
5 y y

n T
';-@ Iff@ U}.Sm _| TA—>B )_DB%A_A]
B

W\ 71 Quantum Channel ob
{pj,|0;)}

What information can be transmitted reliably at what rate?

d Openproblems:

1. Converse (not easy even in the i.i.d. limit)?
- Asymptotic limit of the entropy?? Hpin(Sm * S,,,|RE)r

2. What happens if we consider symmetry-preserving operations, not
only unitary?

3. How toimplement symmetry-preserving unitary??



Part 3.

Summary

O-Shi-Ma-i
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Unitary design meets

QIP and fundamental physics

How to

Still, many open problems.

» Optimal construction Unitary designs

{Applicationr

> Exact construction

> “Less” random construction
> etc...

Quantum randomized algorithm

Quantum sensing | | Quantum comp.

Rand. benchmarking Quantum commun.

Quantum information science

Random unitary

construct? \  Approximation

Quantum chaos

Open problems.
> Applications of t-design?

(t =3)
» Decoder? Petz map??
» Not Haar?
» etc...

How to use?

Pre-thermalization

Quantum duality

Disordered systems

Quantum black holes

Fundamental physics
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Possible future direction: symmetry

Symmetry-preserving Random unitary

Unitary designs?

Symmetry-preserving Symmetric
Quantum commun. Quantum black holes

Fundamental physics

33/34
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