
Unitary designs
- constructions and applications -

Yoshifumi Nakata

The University of Tokyo

@ 8th Quantum Theory & Technology Un-Official Meeting



Self-introduction
中田芳史

東京大学工学系 光量子科学研究センター: 特任研究員

経歴：
 2006 - 2008: 東京大学 修士課程（村尾研）
 2008 - 2010: 青年海外協力隊 エチオピア
 2008 - 2013: 東京大学 博士課程（村尾研）
 2013 - 2015: Leibniz University Hannover (Germany)
 2015 - 2017: Autonomous University of Barcelona (Spain)
 2017 - : 東京大学（特任研究員）
 2018 - : 京都大学基研（特定助教）

最近は「ユニタリ・デザイン」に
関連した研究

2/52



Outline
Intro.  Random unitary in quantum information

1. Haar random unitary in QI 

2. Unitary designs in QI

Part I.  Constructing unitary designs

1. Unitary 2-designs

2. Unitary t-designs for general t

Part II.  Applications of random unitary

1. Towards channel coding with symmetry-preserving unitary

3/34



Intro.
Random unitary in quantum information science

Randomness meets Quantum World!!
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A Haar random unitary

A Haar random untiary is the unique unitarily invariant 
probability measure H on the unitary group 𝑈(𝑑). Namely,

(A) 𝜇H(𝑈 𝑑 ) = 1,

(B) for any 𝑉 ∈ 𝑈(𝑑) and any (Borel) set 𝜔 ⊆ 𝑈 𝑑 , H 𝑉𝜔 = H 𝜔𝑉 = H 𝜔 .

A distribution of the Haar measure

Unitary group 𝒰(𝑑)
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Applications of a Haar random unitary

Haar random unitary is very useful in QIP and in fundamental physics.

In QIP

1. Q. communication [Hayden et.al. ‘07]

2. Randomized benchmarking [Knill et.al. ‘08]

3. Q. sensing [Oszmaniec et.al. ‘16]

4. Q. comp. supremacy  [Bouland et.al. ‘18]

Quantum 
communication

Quantum 
computation

In fundamental physics

1. Disordered systems 

2. Pre-thermalization [Reimann ‘16]

3. Q. black holes [Hayden&Preskill ‘07]

4. Q. chaos -OTOC- [Roberts&Yoshida ‘16]
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 Quantum communication

– Two people want to communicate in a quantum manner.

Haar random in Q. communication

Haar random unitary Fully Quantum Slepian-Wolf (FQSW)
(aka Coherent State merging)

Mother protocol

Entanglement distillation

Noisy Quantum Teleportation

Noisy Superdense coding

Father protocol

Quantum capacity

Entanglement-assisted 
classical capacity

Quantum reverse 
Shannon theory

Quantum multiple access capacities

Quantum broadcast channels

Distributed compression

Family tree of information protocols
See Hayden’s tutorial talk in QIP2011
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 Quantum communication

– Two people want to communicate in a quantum manner.

 Haar random unitary is a random encoder!!
– It is extremely inefficient (too random).

Fixed code
LDPC code, Stabilizer code, etc… Less random code??

Google, IBM, and others already 

have “random” dynamics.

Why don’t we try to use it?

Need to think about 

approximating Haar random!

Haar random in Q. communication

Unitary design
8/34



Unitary designs as approximating Haar

 Random coding by unitary design?

– Nice applications of NISQ (Noisy-Intermediate-Scale-Quantum device).

– Quantum pseudo-randomness in quantum computer

– Nice insights to fundamental physics (chaos, blackholes, etc…)

 Unitary 𝑡-design is a set of unitaries that simulate up to the 𝑡-th
order properties of Haar random unitary.

A distribution of the Haar measure

Unitary group 𝒰(𝑑)

A distribution of a unitary design

Simulating 𝑡th order 
properties

持続可能な高度量子技術開発に向けた
量子疑似ランダムネスの発展と応用
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Unitary design meets
QIP and fundamental physics

Haar random unitary

Fundamental physics

Quantum commun.

Quantum comp.

Rand. benchmarking

Quantum sensing

Quantum randomized algorithm 

Disordered systems

Pre-thermalization

Quantum black holes

Quantum chaos

Quantum duality

Quantum information science

Unitary designs
How to use?

Applications

Approximation

How to 
construct?
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Part 1.
Constructing unitary designs

Generating quantum pseudo-randomness!

In collaboration with Hirche, Koashi, and Winter.

[1] YN, C. Hirche, C. Morgan, and A. Winter, JMP, 58, 052203 (2017).

[2] YN, C. Hirche, M. Koashi, and A. Winter, PRX, 7, 021006 (2017).
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 A more precise definition:

Short History of constructing designs

Approximate unitary design
An 𝝐-approximate unitary 𝒕-design is a probability measure that 

simulates up to the 𝒕th order statistical moments of the Haar measure 

within an error 𝝐.

 Indeed, the average over Haar measure is the minimum, which is 

𝑡! if 𝑑 ≥ 𝑡.

Unitary t-design minimizes 
the frame potential of degree 𝑡.
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 Two approaches

1. Use a subgroup of the unitary group →Clifford group

2. Use a “random” quantum circuits

Short History of constructing designs

Approximate unitary design
An 𝝐-approximate unitary 𝒕-design is a probability measure that 

simulates up to the 𝒕th order statistical moments of the Haar measure 

within an error 𝝐.

Beautiful analyses are possible!!

Exact unitary designs!!

☠Quantum circuits??

☠Up to 2- (or 3-)designs.

Works for general 𝑡-design.

Quantum circuits are given.

☠Not exact designs.

☠Case-by-case analyses….
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Short History of constructing designs

 “Random” circuits construction

Approximate unitary design
An 𝝐-approximate unitary 𝒕-design is a probability measure that 

simulates up to the 𝒕th order statistical moments of the Haar measure 

within an error 𝝐.

HL09 BHH12 NHKW17

Quantum 
circuit

Q. Fourier Transformation

+ Toffoli-type gates
Local random circuits

Hadamard gates

+ random diagonal gates

Methods Markov chain
Gap problem of 

many-body Hamiltonian
Combinatorics

# of gates 𝑂(𝑡3𝑁3)
[Brodsky & Hoory ’13]

𝑂(𝑡10𝑁2) Θ(𝑡𝑁2)

Works for 𝑡 = 𝑂(𝑁/ log𝑁) 𝑡 = 𝑂(poly 𝑁 ) 𝑡 = 𝑜( 𝑁)

BHH12
Googleによる実験

(超伝導qubit:≈49 qubits?)
[S. Boixo, Nature Physics, 2018]

NHKW17
中国・カナダによる実験

(NMR: 12 qubits)
[J. Li, arXiv, 2018]

HM18
# of gates 

= 𝑂(poly(𝑡)𝑁1+1/𝐷) for any 𝐷 < log𝑁.
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 The idea is to use random diagonal unitaries in 𝑋 and 𝑍 bases.

– Each 𝐷𝑖
𝑊 are independently chosen.

– If ℓ ≥ 𝑡 +
1

𝑁
log2 1/𝜖, this forms an 𝜖-approximate unitary 𝑡-design.

– ≈ 𝑡𝑁2 gates are used in the construction

𝐷ℓ
𝑍𝐷1

𝑍 𝐷ℓ
𝑋𝐷1

𝑋

Constructing designs by NHKW17

𝐷ℓ+1
𝑍

𝜽 𝝑𝝋Unitary group

Random 2-qubit gates 
diagonal in the Z basis.
# = 𝑁(𝑁 − 1)/2
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Short History of constructing designs

 “Random” circuits construction

Approximate unitary design
An 𝝐-approximate unitary 𝒕-design is a probability measure that 

simulates up to the 𝒕th order statistical moments of the Haar measure 

within an error 𝝐.

HL09 BHH12 NHKW17

Quantum 
circuit

Q. Fourier Transformation

+ Toffoli-type gates
Local random circuits

Hadamard gates

+ random diagonal gates

Methods Markov chain
Gap problem of 

many-body Hamiltonian
Combinatorics

# of gates 𝑂(𝑡3𝑁3)
[Brodsky & Hoory ’13]

𝑂(𝑡10𝑁2) Θ(𝑡𝑁2)

Works for 𝑡 = 𝑂(𝑁/ log𝑁) 𝑡 = 𝑂(poly 𝑁 ) 𝑡 = 𝑜( 𝑁)

HM18
# of gates 

= 𝑂(poly(𝑡)𝑁1+1/𝐷) for any 𝐷 < log𝑁.

BHH12
Googleによる実験

(超伝導qubit:≈49 qubits?)
[S. Boixo, Nature Physics, 2018]

NHKW17
中国・カナダによる実験

(NMR: 12 qubits)
[J. Li, arXiv, 2018]
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Constructing designs by HM18
Construction by BHH12

 The idea is to apply random 2-qubit gates on 
nearest-neighbor qubits.

 Mapped to a Hamiltonian gap problem.

 After ≈ 𝑡10𝑁2 gates, it becomes an 
approximate unitary 𝑡-design.

– The 𝑡-dependence may not be optimal.

Qubits

 1-dimensional geometry.Time

𝐷-dimensional geometry.

HM18
# of gates 

= 𝑂(poly(𝑡)𝑁1+1/𝐷) for any 𝐷 < log𝑁.



Constructing designs by HM18
Qubits on 2-dim lattice

1. Apply random gates in one direction to make 
a design in each row.

– ≈ 𝑡10( 𝑁)2 gates per each row [BHH12].

– There exists 𝑁 rows.

2. Do the same in another direction.

3. Repeat 1 and 2, poly(𝑡) times.

This forms an approximate unitary t-design, 
where # of gates = 𝑂(poly(𝑡)𝑁3/2).

𝑁 qubits

𝑁
q

u
b

it
s

≈ 𝑡10𝑁3/2 gates. 

≈ 𝑡10𝑁3/2 gates. 

Note: can be generalized to any 𝐷 ∈ ℕ

Is this method applicable 
to any constructions??

e.g.) NHKW17
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Optimality of the constructions
HM18

# of gates = 𝑂(poly(𝑡)𝑁1+1/𝐷) for any 𝐷 < log𝑁.

Is it possible to achieve this bound? If not, better bound? 
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Summary and open questions
about constructing designs

 Several constructions for approximate 𝑡-designs for general 𝑡.

– Is the bound (≈ 𝑡𝑁) achievable?

– In design theory, a 𝑡-design has several “types”. 

 What about exact ones?

– In some applications, we need exact ones, e.g. RB.

– For 2-designs, use Clifford circuits [CLLW2015].

– For general 𝑡, how to construct exact ones?

Not all “types” are 
needed in QIP.

Exact ones for any 𝑡 [Okuda, and YN, in prep], 
but O(106) gates to make  4-designs on 2 qubits…



Part 2.
Applications of unitary designs

Let’s use Quantum pseudo-randomness!

In collaboration with Wakakuwa, and Koashi.

[1] E. Wakakuwa, and YN, in preparation.

[2] YN, E. Wakakuwa, and M. Koashi, in preparation.

[3] E. Wakakuwa, YN, and M. Koashi, in preparation.



Applications of a Haar random unitary

Haar random unitary is very useful in QIP and in fundamental physics.

In QIP

1. Q. communication [Hayden et.al. ‘07]

2. Randomized benchmarking [Knill et.al. ‘08]

3. Q. sensing [Oszmaniec et.al. ‘16]

4. Q. comp. supremacy  [Bouland et.al. ‘18]

Quantum 
communication

Quantum 
computation

In fundamental physics

1. Disordered systems 

2. Pre-thermalization [Reimann ‘16]

3. Q. black holes [Hayden&Preskill ‘07]

4. Q. chaos -OTOC- [Roberts&Yoshida ‘16]

Physical systems often have symmetries!
QIP with symmetry restrictions??

Quantum Communication 
with symmetry-preserving coding
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 So far, Haar random unitaries on ℋ𝑁
𝑆 = (ℂ2)⨂𝑁.

 Physical systems often have a symmetry. 

– Rotational symmetry, U(1) symmetry, etc…

– Tensor product representation of a group G.

– Irreducible decomposition:

Random unitary with a symmetry

multiplicity multiplicity

ℋ𝑁
𝑆 = ⨁ (ℋ𝑗

𝑆𝑟⨂ℋ𝑗
𝑆𝑚)

𝑗 = 1

𝐽

ℋ𝑁
𝑆 = ⨁ (ℋ𝑗

𝑆𝑟)⨁𝑚𝑗
𝑗 = 1

𝐽

e.g.) Spin-spin coupling (spin-1/2 × 3):  ℋ = 4 ⨁2⨁ 2

4-dimensional irrep.

(dimℋ1
𝑆𝑟 = 4, dimℋ1

𝑆𝑚 = 1) 2-dim. irreps with multiplicity 2.

(dimℋ2
𝑆𝑟 = 2, dimℋ2

𝑆𝑚 = 2)

dim(ℋ𝑗
𝑅) = 𝑚𝑗
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Hilbert space 
invariant

under any action of G.



 So far, Haar random unitaries on ℋ𝑁
𝑆 = (ℂ2)⨂𝑁.

 Physical systems often have a symmetry. 

– Rotational symmetry, U(1) symmetry, etc…

– Tensor product representation of a group G.

– Irreducible decomposition:

 “Symmetry-preserving” random unitaries.

– 𝑈 = ⨁ (𝐼𝑗
𝑆𝑟⨂𝑈𝑗

𝑆𝑚), where 𝑈𝑗
𝑆𝑚 is the Haar on ℋ𝑗

𝑆𝑚.
𝑗 = 1

𝐽

e.g.) Spin-spin coupling (spin-1/2 × 3):  ℋ = 4 ⨁2⨁ 2

{ 𝑙 = 1/2,𝑚 = 1/2 , 𝑙 = 1/2,𝑚 = −1/2 }

{ 𝑙 = 1/2,𝑚 = 1/2 , 𝑙 = 1/2,𝑚 = −1/2 }𝑈2
𝑆𝑚

Hilbert space 
invariant

under any action of G.

Random unitary with a symmetry

ℋ𝑁
𝑆 = ⨁ (ℋ𝑗

𝑆𝑟⨂ℋ𝑗
𝑆𝑚)

𝑗 = 1

𝐽

ℋ𝑁
𝑆 = ⨁ (ℋ𝑗

𝑆𝑟)⨁𝑚𝑗
𝑗 = 1

𝐽

24/34



Why symmetry-preserving R.U.?

𝑈 = ⨁ (𝐼𝑗
𝑆𝑟⨂𝑈𝑗

𝑆𝑚), where 𝑈𝑗
𝑆𝑚 is the Haar on ℋ𝑗

𝑆𝑚
.

Symmetry-preserving random unitary (a group G is given)

𝑗 = 1

𝐽

[1] E. Wakakuwa, and YN, in preparation.

Decoupling-type theorem
One of the most important theorems in QIP

“Hybrid” communication
quantum and classical

[3] E. Wakakuwa, YN, and M. Koashi, on going.

Quantum Communication
with symmetry restriction

[2] YN, E. Wakakuwa, and M. Koashi, in prep.

25/34



Quantum Communication
with symmetry-preserving coding

Alice BobQuantum Channel

 Limited to symmetry-preserving unitary encoding!

 In general, full information cannot be reliably transmitted.

 A group 𝐺 is acting on the system 𝐴.

 The ℰ𝐴 should be in the form of 𝑈 = ⨁ (𝐼𝑗
𝑆𝑟⨂𝑈𝑗

𝑆𝑚).

What information can be transmitted reliably at what rate?
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Quantum Communication
with symmetry-preserving coding

What information can be transmitted reliably at what rate?

Hopeless to transmit
(no encoding)

Maybe possible 
to transmit

Hopeless to transmit?
(no encoding)

In general, cannot
be transmitted!

Reliably 
transmitted!

Classical info Is 
reliably transmitted!

Quantum info
cannot!
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Quantum Communication
with symmetry-preserving coding

What information can be transmitted reliably at what rate?

Reliably 
transmitted!

Classical info Is 
reliably transmitted!

From the information of what random code 𝑈𝑗
𝑆𝑚 is used in ℋ𝑗

𝑆𝑚 , 

Bob can guess 𝑗.
(although 𝑗 is NOT transmitted through the channel)
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Quantum Communication
with symmetry-preserving coding

What information can be transmitted reliably at what rate?

Reliably 
transmitted!

Classical info Is reliably 
transmitted!

At what rate??
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Quantum Communication
with symmetry-preserving coding

 Open problems:
1. Converse (not easy even in the i.i.d. limit)?

– Asymptotic limit of the entropy?? 

2. What happens if we consider symmetry-preserving operations, not 
only unitary?

3. How to implement symmetry-preserving unitary??

What information can be transmitted reliably at what rate?

30/34



Part 3.
Summary

O-Shi-Ma-i
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Unitary design meets
QIP and fundamental physics

Random unitary

Fundamental physics

Quantum commun.

Quantum comp.

Rand. benchmarking

Quantum sensing

Quantum randomized algorithm 

Disordered systems

Pre-thermalization

Quantum black holes

Quantum chaos

Quantum duality

Quantum information science

Unitary designs
How to use?

Applications

Approximation

How to 
construct?

Still, many open problems.
 Optimal construction
 Exact construction
 “Less” random construction
 etc…

Open problems.
 Applications of 𝑡-design? 

(𝑡 ≥ 3)
 Decoder? Petz map??
 Not Haar?
 etc…
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Possible future direction: symmetry

Symmetry-preserving Random unitary

Fundamental physics

Quantum commun.

Quantum comp.

Rand. benchmarking

Quantum sensing

Quantum randomized algorithm 

Disordered systems

Pre-thermalization

Quantum chaos

Quantum duality

Quantum information science

Symmetry-preserving Unitary designs?

Applications

Approximation

Symmetric
Quantum black holes

Symmetry-preserving
Quantum commun.
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Thank you


