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Introduction: The Watanabe-Sagawa-Ueda Uncertainty Relations

Watanabe, Sagawa, and Ueda[1,2] proposed definitions for the measure-
ment errors and disturbance to observables in quantum measurements,
based on the quantum estimation theory.

▶ The parametrization:

𝜌(𝜽) = 1
𝑑
𝐼 +

𝑑2−1
∑
𝑖=1

𝜃𝑖𝜆𝑖 =∶ 1
𝑑
𝐼 + 𝜽 ⋅ 𝝀

▶ The measurement error:

𝜀(𝐴; 𝜌, 𝑀) ∶= {
𝒂 ⋅ (𝐽𝑀

𝜽 )+𝒂 − 𝜎𝜽(𝐴)2 (𝒂 ∶= ∇𝜽⟨𝐴⟩𝜽 ∈ (ker 𝐽𝑀
𝜽 )⊤)

+∞ (otherwise)
▶ The disturbance:

𝜂(𝐴; 𝜌, ℰ) ∶= {
𝒂 ⋅ (𝐽S

ℰ∘𝜌(𝜽))
+𝒂 − 𝜎𝜽(𝐴)2 (𝒂 ∈ (ker 𝐽S

ℰ∘𝜌(𝜽))
⊤)

+∞ (otherwise)
▶ The error-error uncertainty relation:

𝜀(𝐴; 𝜌, 𝑀)𝜀(𝐵; 𝜌, 𝑀) ≥ 1
4
∣⟨[𝐴, 𝐵]⟩𝜌∣2

▶ The error-disturbance uncertainty relation:

𝜀(𝐴; 𝜌, ℐ)𝜂(𝐵; 𝜌, ℐ) ≥ 1
4
∣⟨[𝐴, 𝐵]⟩𝜌∣2

Classical Estimation For Infinite-Dimensional Parameters

We consider the case where the probability measure 𝑃𝜃 on the measurable
space (Ω, 𝔅) is characterized by the parameter 𝜃 ∈ Θ ⊂ Ξ, where Ξ is a
real Hilbert space.

▶ The logarithmic dereivative of 𝑃𝜃 in the direction 𝜙 ∈ Ξ [3]:

𝑙𝜃(𝑥; 𝜙) ∶= 𝑑𝐷𝜃𝑃𝜃(⋅)[𝜙]
𝑑𝑃𝜃

(𝑥)

▶ The Fisher information operator 𝐽𝜃 ∈ ℒ(Ξ):
(𝜙, 𝐽𝜃𝜒)Ξ = 𝐹(𝜙, 𝜒) ∶= 𝔼𝜃 [𝑙𝜃(𝑋; 𝜙)𝑙𝜃(𝑋; 𝜒)]

▶ The Cramér-Rao inequality:
𝕍𝕒𝕣𝜃[ ̂𝒇] ≥ (∇𝜃

̄𝒇 , 𝐽+
𝜃 (∇𝜃

̄𝒇)⊤)
Ξ

,

where ̄𝒇 ∶= 𝔼𝜃[ ̂𝒇].
▶ Monotonicity under Markov maps:

𝐽𝑃𝜃
≥ 𝐽𝑇 𝑃𝜃

Quantum Estimation For Infinite-Dimensional Parameters

Suppose that the density operator 𝜌𝜃 is characterized by the parameter
𝜃 ∈ Θ ⊂ Ξ, where Ξ is a real Hilbert space. Let 𝐽𝑀

𝜃 denote the Fisher
information operator associated with the probability measure 𝑃 𝑀

𝜃 (⋅) ∶=
Tr[𝜌(𝜃)𝑀(⋅)], where 𝑀 is a positive operator-valued measure (POVM).

▶ 𝑓 ∶ ℝ+ → ℝ: an operator monotone function:
𝐴 ≤ 𝐵 ∈ ℒ(ℋ) ⇒ 𝑓(𝐴) ≤ 𝑓(𝐵) ∈ ℒ(ℋ)

▶ A map between the space of operators on the Hilbert space ℋ:
K𝑓

𝜌 ∶= R1/2
𝜌 𝑓(L𝜌R−1

𝜌 )R1/2
𝜌 ,

where
L𝜌𝑋 ∶= 𝜌𝑋, R𝜌𝑋 ∶= 𝑋𝜌.

▶ The 𝑓-logarithmic derivative in the direction 𝜙 ∈ Ξ:
𝐿𝑓

𝜃(𝜙) ∶= (K𝑓
𝜌)−1𝐷𝜃𝜌[𝜙]

▶ The 𝑓-quantum Fisher information operator 𝐽𝑓
𝜃 ∈ ℒ(Ξ):

(𝜙, 𝐽𝑓
𝜃 𝜒)

Ξ
= 𝐻𝑓

𝜃 (𝜙, 𝜒) ∶= (K𝑓
𝜌(𝜃)𝐿

𝑓
𝜃(𝜙), 𝐿𝑓

𝜃(𝜒))
HS

(When 𝐻𝑓
𝜃 is ℂ-valued, we extend 𝐻𝑓

𝜃 to operate on Ξ̃ ∶= Ξ + iΞ.)
▶ The quantum Cramér-Rao inequality:

𝐽𝑓
𝜃 ≥ 𝐽𝑀

𝜃

▶ Monotonicity under quantum channels:
𝐽𝑓

𝜌(𝜃) ≥ 𝐽𝑓
ℰ(𝜌(𝜃))

Main Results

Let us consider the estimation of the expectation value ⟨𝐴⟩𝜃 of an ob-
servable 𝐴 in an unknown state 𝜌(𝜃) of a quantum system represented by
an infinite-dimensional Hilbert space ℋ.

▶ The parametrization:
𝜌(𝜃) = 𝜌0 + 𝜃, 𝜃 ∈ Θ ⊂ Ξ,

where 𝜌0 is a fixed density operator and
Ξ ∶= {𝐴 ∈ 𝒯(ℋ) ∣ Tr 𝐴 = 0, 𝐴 = 𝐴∗},

which is a real Hilbert space with the inner product
(𝐴, 𝐵)Ξ ∶= Tr[𝐴∗𝐵], 𝐴, 𝐵 ∈ Ξ.

▶ The 𝑓-correlation function:
𝒞𝑓

𝜌(𝐴, 𝐵) ∶= Tr[𝐴∗K𝑓
𝜌𝐵] − Tr[𝜌𝐴]∗ Tr[𝜌𝐵]

▶ The inverse of the 𝑓-quantum Fisher information operator:
(𝐽𝑓

𝜌(𝜃))
−1 = 𝐶𝑓

𝜌(𝜃),

where 𝐶𝑓
𝜌 ∈ ℒ(Ξ) is the operator defined by

(𝜙, 𝐶𝑓
𝜌𝜓)

Ξ
= 𝒞𝑓

𝜌(𝜙, 𝜓), 𝜙, 𝜓 ∈ Ξ.
▶ The measurement error:

𝜀(𝐴; 𝜌(𝜃), 𝑀)

∶=
⎧{
⎨{⎩

(𝑎, (𝐽𝑀
𝜌(𝜃))

+𝑎)
Ξ

− 𝜎𝜃(𝐴)2 (𝑎 ∶= ∇𝜃⟨𝐴⟩𝜃 ∈ (ker 𝐽𝑀
𝜌(𝜃))

⊥)
+∞ (otherwise)

▶ The disturbance:
𝜂(𝐴; 𝜌(𝜃), ℰ)

∶=
⎧{
⎨{⎩

(𝑎, (𝐽S
ℰ∘𝜌(𝜃))

+𝑎)
Ξ

− 𝜎𝜃(𝐴)2 (𝑎 ∈ (ker 𝐽S
ℰ∘𝜌(𝜃))

⊥)

+∞ (otherwise)
▶ A tighter error-error uncertainty relation:

𝜀(𝐴; 𝜌(𝜃), 𝑀)𝜀(𝐵; 𝜌(𝜃), 𝑀) ≥ ℛ𝑀(𝐴, 𝐵)2 + ∣1
2
⟨[𝐴, 𝐵]⟩𝜃∣

2
,

where
ℛ𝑀(𝐴, 𝐵) ∶= (∇𝜃⟨𝐵⟩𝜃, (𝐽𝑀

𝜌(𝜃))
+∇𝜃⟨𝐴⟩𝜃)

Ξ
− 𝒞S

𝜃(𝐴, 𝐵).

The proof follows from the Cauchy-Schwarz inequality with respect to the
semi-inner product defined by

⟨⟨𝐴, 𝐵⟩⟩ ∶= (∇𝜃⟨𝐵⟩𝜃, (𝐽𝑀
𝜌(𝜃))

+∇𝜃⟨𝐴⟩𝜃)
Ξ

− 𝒞R
𝜃 (𝐴, 𝐵).

▶ A tighter error-disturbance uncertainty relation: There exists a POVM 𝑀
such that

𝜀(𝐴; 𝜌(𝜃), ℐ)𝜂(𝐵; 𝜌(𝜃), ℐ) ≥ ℛ𝑀(𝐴, 𝐵)2 + ∣1
2
⟨[𝐴, 𝐵]⟩𝜃∣

2

Conclusion

▶ The definitions of measurement error and disturbance by Watanabe,
Sagawa, and Ueda can be extended to infinite-dimensional quantum
systems.

▶ In the process, we constructed classical and quantum estimation theories for
infinite-dimensional parameters in a way that naturally extends the
finite-dimensional case.

▶ We found the inverse of the 𝑓-quantum Fisher information operator 𝐽𝑓
𝜃

when the parametrization is 𝜌(𝜃) = 𝜌0 + 𝜃.
▶ We obtained stricter inequalities than the original ones.
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