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FIG. 1. Configuration for the QND measurement of the sig- FIG. 1. Configuration for the QND measurement of the sig-
nal photon number. Transmissions of mirrors M1 and M2 are nal photon number. Transmissions of mirrors M 1 and M2 are
unity for signal frequency. Signal wave passes through the opti- unity for signal frequency. Signal wave passes through the opti-
cal Kerr medium without changing its photon number. Phase cal Kerr medium without changing its photon number. Phase

of the probe wave is modulated by the signal photon number. of the probe wave is modulated by the signal photon number.




IV. SELF-PHASE-MODULATION EFFECT

Equations (8)—(10) are idealized in the sense that they
do not include the self-modulation of the phase caused by
the signal and probe waves. In order to treat the Kerr
medium more realistically, we must consider the full
Hamiltonian. We shall then show that it is possible to ar-
rive at a QND measurement arrangement which is
describable in terms of the ideal Hamiltonians (8)—(10).

The perturbation energy due to the third-order non-
linear effect is

H'=fff [fEdPNL]dV
=%f f f2X5}131E;EjEkE,dV. (26)

Here, X®) is defined not only for the optical Kerr effect
but also for every process in which four photons are emit-
ted or absorbed. In contrast, it should be noted that X*
in (6) is phenomenologically defined for the optical Kerr
effect, especially for the phase modulation of the probe
wave by the signal wave.

V. MEASUREMENT ACCURACY
AND THE IMPOSED PHASE NOISE

In general quantum measurements, the product of the
measurement accuracy and the additional uncertainty im-
posed on the conjugate observable is expected to satisfy
the inequality of Heisenberg’s uncertainty principle.
However, whether the equality sign is achievable or not in
a QND measurement has not yet been investigated. We
will show that the proposed QND measurement scheme
provides the minimum uncertainty product of measure-
ment accuracy for photon number and imposed phase
noise.

Consider the case without the self-phase-modulation ef-
fect for both the signal and probe waves. The output
phase of the signal is, in analogy with (22),

¢s = +‘/an ’ ' (36)

APPENDIX

In this appendix the output of the proposed
interferometer—balanced-mixer detector is derived. The
observed photon number is defined as the output current
divided by a normalized factor which changes the current
into the photon number. Equations (23)—(25) are derived
by the obtained formula for the observed photon-number
operator.

Figure 3 shows the present scheme in which the annihi-
lation operator for eacl\ part of the interferometer is speci-
fied. The probe laser | utput a is divided by beam splitter

tical Kerr medium
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FIG. 3. Detailed description of the annihilation operators in
the interferometer—balanced-mixer detector. Probe wave and
reference wave are denoted as a, and a,, respectively. Zero-
point fluctuation, b, is mixed at beam splitter 1.
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In this appendix the output of the proposed
interferometer—balanced-mixer detector is derived. The
observed photon number is defined as the output current
divided by a normalized factor which changes the current
into the photon number. Equations (23)—(25) are derived
by the obtained formula for the observed photon-number
operator.

Figure 3 shows the present scheme in which the annihi-
lation operator for each part of the interferometer is speci-
fied. The probe laser output a is divided by beam splitter
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Abstract

Quantum mechanics has been established on the basis of the Hamiltonian formula which describes the time
evolution of the system. In any textbook, the quantization procedure starts from the box-quantization, in which

spatial modes of a cavity are first defined, and then the time evolution of the modes is described. The Hamiltonian
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A has a role of “time evolution generator,” which governs the time evolution of an operator 4 as

I=

s / / / j Ldtdzdydz = 0

(£ : Lagrangian density)
Minimum action principle

/
21
1] L(z)dz=0
/:n (z)dz
T
where L(Z)E/AL Ldtdzdy
4

2 oL ] _o
0z |(0®/dz)] ~ 0@
| (Legendre transform)

dA
E = {A,I,}

where I,E/A/()Tl,dtdzdy,

I,EH~6—¢—E, and
0z

oL i
399/07) (conjugate observable)

= {®(t,z,9,2), (¢, ', ¢/, 2)}
=68(t' = )8(z' - 2)8(y' — v)

Usual theory

t
5 [ L(t)dt =0

where L(t)E///V Ldzdydz (Lagrangian)
4
/] oL oL .
3 |[@%/2) = 20 (Lagrange equation)
| (Legendre transform)

dA
- = A}

where H E///;, Hdzdydz (Hamiltonian),

0P
Ea
_oc ;

I= FEED) (conjugate observable)

H=1- — L (Hamiltonian density), and

= {®(t,z,y,2), (¢, 7', ¢, 2')}
= 8(z' — 2)6(y' — y)8(z' - 2)

E@t,z,4,2)=) 1 / 22% e""a, () + Hel, )

where A is the cross-sectional area of the beam. This expression will be used
in later sections. -
The spatial evolution of G, (z) is given by equation of evolution

dEs 1 g -
zau(z) = E[GW(Z),II(Z)] ’ (3)

where I, is the spatial evolution generator for the z axis, which is defined as
I, = [ [dzdy foT dt T;,, where T, is the (z,z) component of the Maxwell
energy-momentum tensor. I, is then expressed by the field components as

fzz//dxdy/OTdt [E,b,+ﬁ,z§,—%(E:D+H~B)] e 4

For a plane wave beam, the integral for (z, y) plane should be restricted within
the cross-sectional area of the beam. When there is only dispersion but no
perturbation, the unperturbed spatial evolution generator, Io is of the form

- b 4 1
fo=- Xw:hkw <a1,aw + 5) , (5)
which leads to the trivial propagation solution:
a,(2) = €'%a,,(0) . (6)

When there is an interaction, the slowly varying annihilation operator fiw(z)
is defined by
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FIG. 1. Schematic view of a directional coupler

d ; 1.5 5
5 Aw(#) = 7 14u(2), fine(2)] - (10)

Iint is expressed using the perturbation polarization Pas

Tt = ///OT (EZPZ ~ %E P) dtdzdy . (11)

Since Pis a function of the field, fin; is expressed by A, (z)’s and A}, (z)’s, us-
ing the quantized expression of the field. Equation of evolution (10) thus gives
a set of coupled-mode equations for relevant A, (z)’s and Al (2)’s. The above
formula is consistently used in solving specific problems described hereafter.

(a) (b)

FIG. 5. Stationary pulse propagation in a non-dispersive medium. (a) Spatial
evolution of a temporal pulse mode. (b) Time evolution of a spatial pulse mode.
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Anomalous commutation relation and modified spontaneous emission
‘inside a microcavity

Ma.sa.hito Ueda and Nobuyuki Imoto X
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Usual ptical operator relati for a beam splitter are shown to lead to an anomalous

i lation inside a mi ity. The physical origin of this anomaly is identified as
self-interference of the mode whose coherence length is longer than the round-trip length of the
cavity. Altered sponta.neous emxs.sxon of an exmted a.tom is found to be a direct manifestation of

this 1 The g lati which are
derived from the 1 to the Sck i lity, cannot be detected
by probing the internal field with a beam sphtter The 1 i

can be related to the change in the effective re.ﬁectw:ty of the beam sphtber The sxmzlnnty &nd
difference between an excited atom and a probe beam splitter are discussed.

PACS number(s): 03.65.Bz, 42.50.Dv, 42.50.Lc

The commutation relation can be = 1 inside a cavity
Ueda & Imoto PRA50, 89(1994)
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Appendix: Field commutators are always normal even in cavities.

As discussed in slide 7, we derived that the commutator [a(w), at(w’)] becomes
anomalous, which is because the w modes are incompatible with the resonator modes
[PRA50,89 (1994)]. (This anomaly is related to the Purcell effect.)

In this appendix, we show that the field commutators are normal even inside the
resonator. This was published in PRL77, 1739 (1996). (See below).

VOLUME 77, NUMBER 9 PHYSICAL REVIEW LETTERS 26 AuGusT 1996

Field Commutation Relations in Optical Cavities

Stephen M. Barnett
NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan
and Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 ONG, Scotland™

Claire R. Gilson
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Bruno Huttner' and Nobuyuki Imoto
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(Received 15 September 1995)

We introduce a simple quantum theory of the lossy beam splitter. When applied to describe a Fabry-
Pérot cavity this leads to apparently anomalous commutation relations for the intracavity operators.
We show that these unfamiliar properties are nevertheless consistent with the fundamental canonical
commutator for the vector potential and electric field operators. This result is derived as a consequence
of causality as applied to the properties of mirror reflection coefficients. [S0031-9007(96)00953-2]
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